Ведущие игроки
Слайды для этого раздела взяты из статьи Квантовый компьютер: большая игра на повышение. Лекция в Яндексе, от научного сотрудника Российского квантового центра Алексея Фёдорова. Позволю себе прямые цитаты:
Все технологически успешные страны в данный момент активно занимаются развитием квантовых технологий. В эти исследования вкладывается огромное количество средств, создаются специальные программы поддержки квантовых технологий.
В квантовой гонке участвуют не только государства, но и частные компании. Суммарно Google, IBM, Intel и Microsoft вложили около 0,5 млрд долларов в развитие квантовых компьютеров за последнее время, создали крупные лаборатории и исследовательские центры.
На Хабре и в Сети есть множество статей, например, вот, вот и вот, в которых текущее состояние дел с развитием квантовых технологий в разных странах рассматривается более подробно. Для нас сейчас главное, что все ведущие технологически развитые страны и игроки вкладывают огромные средства в исследования в этом направлении, что дает надежду на выход из текущего технологического тупика.
«Уже сегодня это на нас влияет, а завтра повлияет очень сильно». Разговор о квантовых технологиях с Алексеем Фёдоровым
Время на прочтение
Технологии, основанные на квантовых эффектах, обладают интересной двойственностью: с одной стороны, они давно стали реальностью (достаточно вспомнить о транзисторах и лазерах) и продолжают активно развиваться; с другой стороны, непросто вспомнить, какие значимые результаты получили широкую огласку в последние годы. Почти наверняка большинство читателей так же, как и я, вспомнят разве что объявление о достижении квантового превосходства. Но там до конца так и не было ясно, случилось оно или не случилось.
И всё же прогресс в квантовых технологиях заметен хотя бы по тому, какое внимание им уделяют крупнейшие корпорации. I BM ещё в 2018 году рапортовали о сотне тысяч пользователей платформы Quantum Experience, Microsoft создаёт quantum development kit, и даже J. P. Morgan пытается развить в компании quantum culture. Любопытно, что сейчас всё больше говорят о связи квантовых вычислений и искусственного интеллекта.
В конце ноября 2020 года я встретился с Алексеем Фёдоровым, одним из ведущих российских специалистов в области квантовых технологий, автором десятков научных публикаций, руководителем научной группы Российского квантового центра, профессором МФТИ и обладателем бесчисленного множества других регалий. Он многое рассказал о состоянии современной квантовой науки, о грядущих технологических внедрениях и об интересных задачах, которые можно решать прямо сейчас. Видеозапись интервью смотрите на YouTube, там же доступна и запись последующего доклада на конференции YaTalks.
Какие квантовые компьютеры уже есть в мире и в России?
Собственные квантовые компьютеры строят корпорации Google, IBM, Intel, а также компании поменьше — D-Wave и стартап Rigetti. Компания D-Wave создала машину для квантового отжига на 5 тыс. кубитах, которая превосходит прошлое поколение устройств по размеру, количеству связей между кубитами и скорости работы. Устройство является важным инженерным достижением, в будущем используемым для универсальных квантовых компьютеров. Национальные программы по разработке квантовых компьютеров также созданы и на уровне стран — в Евросоюзе, США, Китае и России.
«Квантового превосходства» в лабораторных условиях первой в мире достигла Google: компьютер Sycamore смог выполнить вычисление за 200 секунд, в то время как традиционный суперкомпьютер справился бы с этой операцией за 10 тыс. лет, описывал журнал Nature итоги эксперимента компании.
В России ученые работают над созданием квантового компьютера сразу на четырех платформах: сверхпроводниках, ионах, нейтральных атомах и фотонах. Согласно утвержденной правительством нашей страны дорожной карте по квантовым вычислениям, первые отечественные квантовые вычислительные устройства появятся уже в 2024 году. Квантовый процессор на основе сверхпроводников будет состоять из 30 кубитов, на основе нейтральных атомов и ионов — из 100, фотонов — из 50.
Сегодня в России работают прототипы квантовых компьютеров с 2-10 кубитами и квантовые симуляторы с 10-20 кубитами. Отечественные компьютеры способны демонстрировать простейшие алгоритмы, решать задачи моделирования простейших молекул. Эти мощности соответствуют уровню развития квантовых вычислений QTRL-4 (метрика зрелости технологий квантовых вычислений, наивысшим уровнем в ней считается QTRL-9).
Поиск новых эффективных препаратов
Благодаря неизбежному росту вычислительной мощности, предсказанной законом Мура, появилось доступное секвенирование ДНК. Но теперь мы вот-вот вступим в эпоху медицины, построенной на квантовых вычислениях.
В то время как на рынке уже и без того много хороших лекарств, скорость с которой они производятся, а также их эффективность, на диво ограничены. Даже с новейшим приростом скорости и точности, они весьма незначительны из-за ограничений стандартных компьютеров.
С организмом, столь сложным, как человеческое тело, существует бесчисленное множество способов, которыми лекарство может реагировать на окружающую среду. Добавьте к этому безграничность генетического разнообразия на молекулярном уровне, и потенциальные исходы для неспецифических лекарственных препаратов резко начинают достигать миллиардных чисел.
И только у квантовых компьютеров будет возможность изучить каждый возможный сценарий взаимодействия с препаратом и представить не только наилучший возможный план действий, но также шансы человека на успешный прием конкретного препарата — за счет комбинации более точного и ускоренного секвенирования ДНК и более точного понимания фолдинга белка.
Эти же самые нововведения, особенно в отношении фолдинга белков, также неизбежно приведут к лучшему пониманию того, как функционирует жизнь в целом, что впоследствии приведет к гораздо более точной трактовке, улучшению препаратов и улучшению результатов.
От идеи до технологического превосходства
Квантовые компьютеры представляют собой класс вычислительных устройств, которые используют для обработки информации явления, характерные для отдельных квантовых систем, таких как атомы, ионы, фотоны и др. Ключевыми для квантовых вычислений являются суперпозиция — возможность квантовых систем быть «одновременно» в нескольких состояниях — и квантовая запутанность, проявляющаяся во взаимосвязи между квантовыми объектами.
Элементарными информационными единицами при работе квантового компьютера являются кубиты — квантовые «аналоги» классических битов информации. Как раз благодаря явлению квантовой суперпозиции кубиты могут быть и логическим нулем, и логической единицей одновременно (в отличие от классических битов, которые могут быть лишь в одном из этих состояний).
Идеи квантовых компьютеров появились в начале 1980-х годов в работах советского математика Юрия Манина, британского математика и физика Дэвида Дойча, а также американского физика Ричарда Фейнмана. Уже в середине 1990-х появились первые квантовые алгоритмы для работы на будущих квантовых компьютерах, которые заинтересовали бизнес. Например, оказалось, что с помощью квантовых компьютеров можно будет взламывать современные криптографические алгоритмы.
В определенных классах математических задач квантовые компьютеры могут продемонстрировать существенное превосходство над классическими технологиями. Примерами задач являются криптоаналитика, моделирование сложных систем, обработка больших данных (big data) и др. Существующие на данный момент квантовые компьютеры обладают десятками и сотнями «шумных» кубитов, что не дает возможности полностью раскрыть потенциал их использования. Однако такие компьютеры уже способны на определенных тестовых математических задачах обгонять суперкомпьютеры. Например, на решение тестовой задачи квантовому компьютеру хватает нескольких часов или минут, тогда как на классическом оно заняло бы больше 45 лет. При этом уже сейчас есть возможность решать прикладные задачи небольшого масштаба, например из области химии и машинного обучения.
Ключевую роль для полезного квантового превосходства играет решение двух принципиальных задач. Во-первых, создание квантового процессора с большим количеством кубитов и низким уровнем ошибок. В одном сценарии это станет возможным благодаря прогрессу уже существующих систем, а в другом потребует поиска или разработки новых физических платформ для квантовых вычислений. Во-вторых, необходимо значительно расширить класс квантовых алгоритмов для решения прикладных задач. Прогресс движется по каждому из направлений, поэтому на масштабе четырех-пяти лет можно ожидать первые примеры применения квантовых компьютеров для полезных задач.
В качестве одного из потенциальных направлений для квантового превосходства можно рассматривать машинное обучение. Над применением квантовых компьютеров для задач искусственного интеллекта работают ведущие научные группы по всему миру. Например, ученые из Российского квантового центра вместе с сингапурской компанией «Геро» разработали квантовый алгоритм машинного обучения для поиска новых типов лекарств, что позволило найти более 2 тыс. новых молекул с лекарственными свойствами.
Ошибки
Как мы уже говорили, квантовые процессы и квантовые вычисления имеют вероятностную природу, мы не можем быть уверены на 100% ни в чем, а только с какой-то вероятностью. Ситуация усугубляется еще и тем, что квантовые вычисления подвержены ошибкам. Основные типы ошибок при квантовых вычислениях это:
Ошибки, связанные с декогерентностью, возникают сразу же, как только мы запутали наши кубиты и начали производить вычисления. Чем больше кубитов мы запутали, тем сложнее система, и тем легче ее разрушить. Низкотемпературные саркофаги, защищенные камеры, все эти технологические ухищрения как раз направлены на то, чтобы снизить число ошибок и продлить время декогеренции.
Вычислительные ошибки гейтов — любая операция (вентиль) над кубитами может с некоторой вероятностью завершиться с ошибкой, а нам для реализации алгоритма нужно выполнить сотни вентилей, вот и представьте, что мы получим в конце выполнения нашего алгоритма. Классический вариант ответа на вопрос — “Какова вероятность встретить динозавра в лифте?” — 50х50, или встретишь или нет.
Проблема еще усугубляется тем, что стандартные методы коррекции ошибок (дублирование вычислений и усреднение) в квантовом мире не работают из-за теоремы о запрете клонирования. Для коррекции ошибок в квантовых вычислениях пришлось придумать квантовые же методы коррекции. Грубо говоря мы берем N обычных кубитов и делаем из них 1 логический кубит с меньшим уровнем ошибок.
Но тут возникает другая проблема — общее количество кубитов. Смотрите, допустим у нас есть процессор со 100 кубитами, из которых 80 кубитов заняты коррекцией ошибок, тогда нам для вычислений остается только 20.
Ошибки считывания финального результата — как мы помним, результат квантовых вычислений нам представлен в виде вероятностного распределения ответов. Но считывание финального состояния тоже может завершиться с ошибкой.
На том же сайте есть сравнительные таблицы процессоров по уровням ошибок. Для сравнения возьмем те же процессоры, что и в предыдущем примере — IBM IBM Q System One и Google Sycamore:
Здесь фиделити — мера схожести двух квантовых состояний. Величину ошибки можно грубо представить как 1-Fidelity. Как мы видим, ошибки на 2-х кубитных гейтах и ошибки считывания являются главным препятствием к выполнению сложных и длинных алгоритмов на существующих квантовых компьютерах.
Еще можно почитать роадмап от 2016 года от NQIT по решению задачи коррекции ошибок.
Технологии будущего
Недавно физики из Китая запустили квантовый компьютер, которому, по их словам, потребовалась 1 миллисекунда для выполнения задачи, которая заняла бы у обычного компьютера 30 триллионов лет! Все потому, что в квантовых вычислениях операции используют квантовое состояние объекта для создания кубита.
Эти состояния представляют собой неопределенные свойства объекта до того, как они были обнаружены, такие как вращение электрона или поляризация фотона.
Вместо того, чтобы иметь четкое положение, неизмеренные квантовые состояния возникают в смешанной «суперпозиции». Эти суперпозиции могут быть связаны с суперпозициями других объектов, а значит их конечные результаты будут математически связаны, даже если мы еще не знаем, что это такое.
Квантовые компьютеры для вычислений используют такие свойства квантовых систем, как суперпозиция и запутанность.
Вам будет интересно: Может ли квантовая механика объяснить существование пространства-времени?
Чем квантовый компьютер отличается от обычного?
Поскольку ученые строят квантовые компьютеры на нескольких разных платформах (их мы обсудим чуть ниже), внешний вид таких машин также отличается друг от друга.
Современные квантовые компьютеры на сверхпроводниках внешне больше напоминают люстры в стиле стимпанк и функционируют при определенной температуре: для каждого уровня машины нужен собственный микроклимат. Если в помещении становится теплее или холоднее, вычислительная машина становится бесполезной. Для работы квантовых компьютеров применяют систему охлаждения на основе жидкого гелия. Сам компьютер заключен в цилиндрический корпус с насосами системы охлаждения. К этой конструкции подключен ряд традиционных компьютеров для решения задач. Внутри квантовый компьютер состоит из соединений и труб, которые передают сигналы в квантовый «мозг» машины.
Для решения любых алгоритмических задач квантовые компьютеры используют кубиты, которые при обмене информацией принимают значение 0 или 1. Однако в отличие от битов, кубиты могут одновременно находиться в состоянии 0 и 1, благодаря свойству квантовых объектов — суперпозиции. Именно это способствует ускорению решения задач на десятки порядков быстрее классических вычислительных машин.
Если классический компьютер разложит число с 500 десятичными знаками на простые множители за 5 млрд лет, то квантовый аналог в теории управится за 18 секунд.
Кубиты не перебирают последовательно все возможные варианты состояний системы, комбинации, как обычный компьютер, а делают вычисления моментально. Это свойство может применяться при поиске информации по базам данных, составлениях маршрута, моделировании поведения сложных молекул и синтезе материалов. Решение задач, для которых нужно перебрать сотни и тысячи вариантов, ускоряется во множество раз.
Кубиты, в отличие от битов, могут находиться в суперпозиции — то есть одновременно принимать значения 0 и 1
Сейчас многокубитные квантовые компьютеры стоят миллионы долларов, а их изготовление — сложный процесс. Квантовый компьютер сегодня — это установка, которая не предполагает персональное использование на дому. Чтобы работать с этим классом устройств, необходимо обладать специальными компетенциями и уметь раскладывать задачи на понятный машине язык.
Квантовые вычисления и технологии
Квантовая теория необходима для понимания ядерной структуры, составляющей ядро частицы – протона и нейтрона – которые сильно притягиваются друг к другу ядерными силами, а их столкновение высвобождает ядерную энергию.
Квантовые эффекты также лежат в основе полупроводников и транзисторов, которые привели к настоящей электронной революции и массовому производству классических компьютеров. И если говорить о современных технологиях, основанных на квантовой теории, то они могут быть усовершенствованы.
Запутанность квантовых состояний – это реальность.
Так, мы знаем, что информация в обычных компьютерах принимает форму двоичных цифр (битов), которые могут иметь только два состояния: 0 или 1. Суперпозиция квантовых битов (кубитов) позволяет компьютеру хранить и 0 и 1 по отдельности, а также комбинацию обоих значений одновременно – используя суперпозиции этих двух состояний.
Вам будет интересно: Предполагает ли квантовая механика множественность миров или что такое интерпретация Эверетта?
На самом деле квантовые вычисления являются самой горячей темой среди физиков и инвесторов, так как обладают невероятным потенциалом с точки зрения скорости и эффективности по сравнению с классическими компьютерами. И все же впереди еще много работы, прежде чем квантовые компьютеры появятся на рынке.
Для создания функционального квантового компьютера требуется удерживать объект в состоянии суперпозиции достаточно долго, чтобы выполнять на нем различные процессы.
По мнению некоторых исследователей, квантовые компьютеры предоставят нам возможность изучать саму квантовую физику неизвестным до сих пор способом. Его можно будет использовать, например, для моделирования поведения молекул лекарств и разработке новых материалов для более эффективных батарей или источников энергии.
Квантовая телепортация, датчики и связь
Звучит как фантастика, но связь между запутанными парами частиц необходима для успешной квантовой телепортации. Исследователи провели множество экспериментов и к 2017 году им удалось телепортировать фотон с Земли на орбиту. Квантовая телепортация также лежит в основе планов по созданию квантового интернета.
Больше по теме: Возможна ли телепортация человека?
В свою очередь, квантовые датчики могут измерять стимулы, например, магнитные поля или высокочастотные сигналы. Их можно использовать в том числе для выявления рассеянного склероза на ранней стадии; мониторинга и заблаговременного предупреждения о вулканической активности; а также для помощи самоуправляемым транспортным средствам «видеть» что находится за поворотом.
Квантовые технологии – сложная область физики, которая исследует поведение субатомных частиц
Что же до квантовой коммуникации, то защита данных с использованием законов квантовой физики может использоваться для обмена секретной информацией, используемой для шифрования и аутентификации. Кванты также могут быть использованы для вычислений и решения определенных задач, с решением которых обычные компьютеры не справятся.
Квантовые алгоритмы
Как уже говорилось, обычные алгоритмы, основанные на бинарной логике, неприменимы к квантовому компьютеру, использующему квантовую логику (квантовые вентили). Для него пришлось придумывать новые, в полной мере использующие потенциал, заложенный в квантовую природу вычислений.
Наиболее известные на сегодняшний день алгоритмы это:
В отличие от классических, квантовые компьютеры не универсальны.
До сих пор найдено лишь небольшое число квантовых алгоритмов.(С)
Спасибо oxoron за ссылку на Quantum Algorithm Zoo, место, где, по уверениям автора (“Stephen Jordan”), собраны и продолжают собираться лучшие представители квантово-алгоритмического мира.
В данной статье мы не будем подробно разбирать квантовые алгоритмы, в Сети много прекрасных материалов на любой уровень сложности, но кратко пробежаться по трем самым известным все-таки надо.
Квантовая защита vs. квантовое нападение
Опасность для современной криптографии возникает из-за возможности реализовать на квантовом компьютере эффективные алгоритмы для факторизации, что несет угрозу для криптографии с открытым ключом, а также в плане ускорения поиска по неупорядоченным базам данных. Масштаб проблемы существенный: более 90% данных, передаваемых в интернете, станут открытыми при появлении квантового компьютера. Криптографические стандарты, например для электронных подписей, необходимо будет пересматривать.
Эпоха квантовых компьютеров предполагает два подхода к защите информации. Во-первых, это квантовое распределение ключей. Оно основано на кодировании информации в одиночные квантовые состояния. Во-вторых, решением является постквантовая криптография — набор криптографических алгоритмов, криптоанализ которых имеет сравнимый уровень сложности для классических и квантовых компьютеров.
Технология квантового распределения ключей уже готова к промышленному использованию, необходимы ускорение темпов адаптации технологий крупными компаниями и строительство городских сетей. Постквантовая криптография также уже готова для внедрения решений по защите широкого спектра приложений (мобильные, веб-приложения, цифровые подписи и т.д.). Прогресс в области квантовых компьютеров является очевидным драйвером для внедрения новых технологий защиты информации. Например, в США уже сейчас принят Акт квантовой кибербезопасности, регламентирующий переход на решения, устойчивые по отношению к атакам с квантовых компьютеров. В России ведется работа по стандартизации квантово-устойчивых алгоритмов. Их масштабное внедрение — это также вопрос ближайших трех—пяти лет.
Картирование человеческого разума
При всех удивительных достижениях, которые имели место в области нейронауки и сознания за последние несколько десятилетий, ученые до сих пор знают удивительно мало о том, как работает сознание.
Но мы, впрочем, знаем, что мозг человека — одна из самых сложных вещей в известной вселенной, и чтобы понять его полностью, необходима вычислительная сила нового типа.
Человеческий мозг состоит из 86 миллиардов нейронов — клеток, которые передают небольшие биты информации за счет активации быстрых электрических зарядов. И хотя электрическая часть работы мозга понятна довольно хорошо, само сознание остается загадкой. « Задача в том», говорит нейробиолог Рафаэль Юсте из Колумбийского университета, «чтобы определить, как физическая подложка клеток, связанных внутри этого органа, относится к нашему умственному миру, нашим мыслям, памяти, ощущениям».
И в попытке понять сознание нейрофизиологи в значительной степени полагались на аналогию с компьютером, поскольку мозг превращает сенсорные данные и вводы в относительно предсказуемые результаты. И что может быть лучше для понимания работы компьютера, чем сам компьютер?
Доктор Кен Хэйворт, невролог, который картирует мышиный мозг, считает, что составление визуализации полного мозга мухи займет примерно один-два года. Но та же идея сопоставления всего человеческого мозга будет просто невыполнима без квантовых вычислений.
Квантовая физика объединяет несколько разделов физики, в которых принципиальную роль играют явления квантовой механики и квантовой теории поля, проявляющиеся на уровне микромира, но и имеющие следствия на уровне макромира. Сюда относятся следующие подразделы:
Экспоненциальное увеличение вычислительной скорости
Для начала небольшое короткое вступление: компьютер, на котором вы читаете это, работает на тех же базовых технологиях, которые используются практически в каждом компьютере мира.
Это конечный двоичный мир, в котором информация закодирована в битах — единицах и нулях — которые могут существовать только в двух состояниях (вкл и выкл). Квантовые вычисления, напротив, используют «кубиты», которые могут существовать в практически бесчисленных состояниях одновременно. ( Грубо говоря, n кубитов может существовать в 2n разных состояниях одновременно).
Если скормить обычному компьютеру последовательность из тридцати 0 и 1, будет примерно миллиард возможных значений этой последовательности, и компьютер, использующий обычные биты, должен проходить каждую комбинацию по отдельности, требуя много времени и памяти. С другой стороны, квантовый компьютер мог бы «видеть» все миллиарды последовательностей одновременно, что существенно сокращало бы временные и вычислительные затраты.
По сути, квантовые компьютеры будут способны производить расчеты за секунды, на которые у обычных компьютеров уходили бы тысячи лет.
Архитектура процессора
В теории мы строим и оперируем схемами из десятков запутанных кубитов, в реальности же все сложнее. Все существующие квантовые чипы (процессоры) построены таким образом, что обеспечивают безболезненное запутывание одного кубита только со своими соседями, которых не больше шести.
Если же нам надо запутать 1-й кубит, скажем, с 12-м, то нам придется строить цепочку дополнительных квантовых операций, задействовать дополнительные кубиты и прочее, что увеличивает общий уровень ошибок. Да, и не забывайте про время декогеренции, возможно к тому моменту, когда вы закончите связывать кубиты в нужную вам схему, время закончится и вся схема превратится в симпатичный генератор белого шума.
Также не забывайте, что архитектура у всех квантовых процессоров разная, и программу, написанную в эмуляторе в режиме “связность всех со всеми” нужно будет “перекомпилировать” в архитектуру конкретного чипа. Есть даже специальные программы оптимизаторы для выполнения этой операции.
Максимальная связность и максимальное количество кубитов для тех же топовых чипов:
И, для сравнения, таблица с данными предыдущего поколения процессоров. Сравните количество кубитов, время декогеренции и процент ошибок с тем, что мы имеем сейчас у нового поколения. Все-таки прогресс потихоньку, но движется.
Про путь в науке
Ты в 15 лет поступил в Бауманку? Как это вообще возможно?
Я в 15 лет закончил школу, так получилось, и потом поступил в Бауманку. Мои родители решили, что начальные классы школы — это скучно, и сказали: «А почему бы тебе не пойти сразу в пятый класс?» Я такой: «А почему бы и нет?» Так и получилось.
Сложно учиться, когда ты моложе одногруппников?
Да. Причём, когда я пришёл, то сразу сказал на кафедре: «Мне, наверное, будет сложно, потому что я моложе всех на два года». Они говорят: «Да? А давай тогда ты будешь старостой. Тебе так будет легче». Поэтому я ещё и был старостой в своей группе. Это помогло мне немножко собраться и двигаться вперёд. Но для Бауманки, на самом деле, это нормальная история: многие ребята поступают достаточно рано. 15 лет — далеко не рекорд.
Почему квантовые компьютеры? Как ты попал в эту область?
Это был длинный путь. Я учился на факультете информатики и систем управления. Занимался классическим IT, если можно так сказать: информатикой, криптографией, и в какой-то момент понял, что мне очень не хватает физики. Начал читать всякие научно-популярные статьи, и узнал, что прямо сейчас происходит какая-то интересная история про кванты. Квантовые компьютеры, квантовая криптография. А почему нам про это не рассказывают? Начал сам про это читать, ходил на занятия на кафедру физики в Бауманке. И как-то так получилось, что в момент выбора научной стези я уже понимал, что хочу заниматься квантовыми вычислениями и квантовой криптографией.
Причём здесь есть личная история. Я увлёкся квантовой криптографией. Это направление меня очень заинтересовало, так что я долго им занимался, но никогда не думал, что из этого получится что-то практическое. Я думал, что это будет теоретическая работа: буду статьи читать, статьи писать и так далее. Но в какой-то момент познакомился с Юрием Курочкиным — он сейчас CTO QRate, спин-оффа Российского квантового центра, который как раз занимается разработкой систем квантовой криптографии. Даже уже не просто разработкой, а внедрением их в разные приложения. И я увидел, что у меня появился человек, благодаря которому, скорее всего, все теоретические идеи в какой-то момент воплотятся в железо. И это действительно получилось. В дипломе, который я писал под руководством Юры, уже содержались элементы экспериментов по квантовой криптографии. А буквально через несколько лет появилась промышленная установка квантовой криптографии, которую производит QRate.
Алексей Фёдоров выступил на конференции YaTalks 5 декабря 2020 года. Посмотреть запись можно на сайте конференции, а также в YouTube. Запись интервью доступна по ссылке.
Дисклеймер
Автор не является специалистом в квантовых вычислениях, и целевая аудитория статьи — такие же ИТ-шники, не квантовые специалисты, которые тоже хотят собрать в голове картинку под названием “Как работают квантовые компьютеры”. Из-за этого многие понятия в статье сознательно упрощены для лучшего понимания квантовых технологий на “базовом” уровне, но без совсем уж сильного упрощения с потерей информативности и адекватности.
В статье, в некоторых местах используются материалы из других источников, список которых приведен в конце статьи. Везде где это было возможно, вставлены прямые ссылки и указания на оригинал текста, таблицы или рисунка. Если где-то что-то (или кого-то) забыл, пишите — поправлю.
Материаловедение и инженерия
Стоит ли говорить, что квантовые вычисления уже привели к массивным последствиям для материаловедения и инженерии, учитывая то, что квантовые расчеты лучше всего подходят для открытий на атомном уровне.
Сила квантовых вычислений позволит использовать все более сложные модели, которые будут отображать, как молекулы собираются и кристаллизуются с образованием новых материалов. Такие открытия, ведущие к созданию новых материалов, впоследствии приведут к созданию новых структур, имеющих последствия в сферах энергетики, борьбы с загрязнением и фармацевтических препаратов.
«Когда инженер строит дамбу или аэроплан, эта структура сперва проектируется при помощи компьютеров. Это чрезвычайно сложно проделать на молекулярном или атомарном масштабе», объясняет Грэм Дэй, профессор химического моделирования в Университете Саутгемптона. « Очень сложно проектировать на атомных масштабах с нуля и уровень неудачи в процессе обнаружения новых материалов очень высок. По мере того, как физики и химики пытаются открыть новые материалы, они часто чувствуют себя в роли путешественников без надежной карты».
Квантовые вычисления смогут обеспечить весьма «надежную карту», позволив ученым имитировать и анализировать атомные взаимодействия с невероятной точностью, что в свою очередь приведет к созданию совершенно новых и более эффективных материалов — без проб и ошибок, неизбежно возникающих при попытке построить новые материалы в более широком масштабе. Это означает, что мы сможем найти и создать лучшие сверхпроводники, более мощные магниты, лучшие источники энергии и многое другое.
Реальные или модельные системы, подчиняющиеся законам квантовой физики, называют квантовыми системами. Описание сложных квантовых систем часто строится на языке квазичастиц, особенно в физике конденсированного состояния. К квантовым системам относятся, например, электрон в атоме водорода, свободные электроны или иные элементарные частицы, электроны в кристалле (квазичастицы — электроны и дырки), колеблющиеся атомы в кристалле (квазичастицы фононы), взаимодействующие спины в решёточной модели (квазичастицы магноны).
Заработок на финансовых рынках
В переплетенном мире финансов, скорость имеет первостепенное значение.
Удивительно большое количество проблем, с которыми сталкивается финансовая отрасль (многие из которых связаны с нехваткой вычислительной скорости), остаются неразрешенными. Даже самые мощные обычные компьютеры, использующие 0 и 1, не могут хотя бы примерно спрогнозировать будущие финансовые и экономические события, не говоря уж о том, чтобы решить сложнейшие проблемы, связанные с ценообразованием опционов на быстро меняющемся рынке.
Например, многие опционы требуют сложных производных, зависящих от различных факторов, что означает, что выплата опциона в конечном счете определяется путем изменения цены базового актива. Попытка отобразить и предусмотреть все возможных «пути» опциона слишком сложна для современных машин. Однако, учитывая свою скорость и маневренность, квантовые компьютеры теоретически могли бы идентифицировать неверный ценовой вариант опциона на акции и использовать его для выгоды своего владельца до того, как рынок предпримет какие-либо значимые действия.
Такого рода мощь могла бы, конечно, нанести ущерб рынку и сильно поднять положение небольших фирм, владеющих и управляющих суперкомпьютером — за счет отдельных трейдеров и фирм, неспособных приобрести такие технологии.
Немного об эмуляции квантовых компьютеров
Квантовые вычисления можно эмулировать на обычном компьютере. Ведь действительно, смотрите:
Для сравнения, Summit (Top-1 из Top-500) несет на себе всего 2.8 Петабайт памяти.
Текущий рекорд симуляций — 49 кубит поставленный в прошлом году на крупнейшем китайском суперкомпьютере (Sunway Taihu Light)
Предел симуляции квантового компьютера на классических системах обусловлен количеством оперативной памяти необходимой для хранения состояния кубитов.
По операциям — для точной эмуляции схемы на 49 кубитов из каких-то 39 “тактов” (независимых слоев вентилей) потребовалось 2^63 комплексных умножений — 4 Пфлопс суперкомпьютера на протяжении 4 часов
Эмуляция квантового компьютера из 50+ кубит на классических системах считается невыполнимой за разумное время. В том числе из-за этого факта Google использовал для своего эксперимента с квантовым превосходством процессор с 53-мя кубитами.
Поиск далеких планет
Никого не удивит, что квантовое вычисление будет широко использоваться в освоении космоса, что часто требует анализа огромных наборов данных.
Используя квантовые процессоры, охлажденные до 20 милликельвинов (близко к абсолютному нулю), инженеры NASA планируют использовать квантовые компьютеры для разрешения сложнейших задач оптимизации, связанных с миллиардами данных.
Например, ученые NASA смогут использовать крошечные колебания в квантовых волнах, чтобы обнаружить мелкие, едва уловимые перепады тепла в невидимых для нас звездах и, возможно, даже черных дыр.
NASA уже использует общие принципы квантовых вычислений для разработки безопасных и эффективных методов космических путешествий — особенно когда дело доходит до отправки роботов в космос. N ASA планирует посылать роботизированные миссии в космос примерно за десять лет, и среди его задач стоит использование квантовой оптимизации для создания сверхточных инструментов прогнозирования того, что может случиться за время миссии — чтобы предупредить любой возможный исход и создать план действий на каждый случай.
Более тщательное и точное планирование роботизированных миссий также приведет к более эффективному использованию батарей, которые выступают одним из основных ограничивающих факторов, когда дело доходит до роботизированных космических миссий.