КВАНТОВЫЙ КОМПЬЮТЕР И ЧТО ТАКОЕ КВАНТОВЫЙ КОМПЬЮТЕР АНАЛИЗ

3 / 2 610

Версия для печати

Компьютеры “Квант” и “Интер”

В наших краях (Западная Беларусь) в 90-х годах помимо “Байтов” и “Ленинградов” были широко распространены клоны Спектрума под названием “Квант” и “Интер”. Хотя они имеют разные название, на самом деле это абсолютно одинаковые компьютеры. Вот типичный образчик компьютера “Квант”:

Как видно, комплектация стандартная для большинства клонов Спектрума – сам компьютер в скромном корпусе, 40-кнопочная клавиатура, источник питания, джойстик, шнуры, инструкция, кассета с несколькими играми. Коробка пенопластовая, что есть большой плюс в карму заводу-изготовителю, такие коробки куда удобнее обычных картонных.

Компьютер представляет из себя обычный ZX-Spectrum 48K. Что же касается описываемых моделей, то они отличаются наличием особых глюков, для устранения которых придётся тыкать в плату паяльником. Но не будем говорить о плохом, вернее оставим доработки на десерт.

Предприятие-изготовитель

Компьютер “Квант” выпускался заводом приборов автоматического контроля (ныне ОАО “Завод ПАК”), г. Орша. Завод существует и поныне, только, конечно же, “Кванты” давно не выпускает.

Что же касается компьютера “Интер”, производителя удалось найти в руководстве по эксплуатации: НПО “Инбел”, 210015, г. Витебск, ул. Ленина, д.16:


КВАНТОВЫЙ КОМПЬЮТЕР И ЧТО ТАКОЕ КВАНТОВЫЙ КОМПЬЮТЕР АНАЛИЗ

Внешне различия между компьютерами “Интер” и “Квант” проявляются в разных стартовых надписях в прошивках ПЗУ:

А также в различном способе маркировки серийного номера:

На фотографии выше – маркировка даты изготовления и серийного номера для компьютеров “Квант”. Также виден логотип завода ПАК.

Маркировка серийного номера компьютера “Интер”. Сомнительно, чтобы этих компьютеров было выпущено столько, что для их счёта потребовался 8-значный серийный номер. Вполне вероятно, что в таком длинном номере может быть зашифрована дата изготовления, или это единый номер вообще для всей продукции, выпускаемой предприятием.

Далее по тексту статьи я не буду делать различий между компьютерами “Квант” и “Интер” и буду их назвать просто “Квант”.

Источник питания

Источник питания компьютера – внешний. Выдаёт напряжение +5В. Сделан качественно. Жаль, что не предусмотрен выключатель питания.

Источник питания компьютера «Квант»

Посмотрим что у него внутри. А внутри там обычный линейный стабилизатор напряжения на КР142ЕН5:

Радиатор, на который установлен стабилизатор напряжения, имеет довольно скромный размер. Для питания самого компьютера такого источника хватает, но для подключения дополнительной периферии, например, контроллера дисковода, его мощности вряд ли хватит.

Клавиатура

У всех моих друзей и знакомых, которым посчастливилось купить “Квант”, основное нарекание вызывала именно клавиатура. Конструкция её, конечно же, оригинальна, но удобства в ней мало.

Клавиатура компьютера «Квант»

С первого взгляда ничего такого – кнопки как кнопки.

Клавиатура отделена от платы листом фольгированного гетинакса для устранения наводок от платы

Снимаем экран, получаем доступ к плате клавиатуры.

Клавиатуру можно снять целиком:

Разбираем клавиатуру дальше. Снимаем плату с контактными площадками.

Кнопки остаются отдельно. По неосторожности их можно легко рассыпать и потерять пружины.

Кнопки от клавиатуры

Проблемы начинаются при попытке собрать клавиатуру обратно. Необходимо попасть штырьком каждой кнопки в соответствующее отверстие на плате. Жутко неудобно. Пластмассовые штырьки при этом легко ломаются. А разбирать клавиатуру приходилось часто и вот почему – дело в самой конструкции замыкающего элемента клавиатуры:


КВАНТОВЫЙ КОМПЬЮТЕР И ЧТО ТАКОЕ КВАНТОВЫЙ КОМПЬЮТЕР АНАЛИЗ

При нажатии кнопки металлический кружок у её основания замыкает контактные площадки на плате. Сами контактные площадки довольно быстро окисляются, и для срабатывания клавиши приходится с каждым разом сильнее на неё нажимать. В конце-концов это выливается в банальное битьё по клавиатуре. Если брать в расчёт эмоциональность подростков, которые из-за глючной клавиатуры не могут пройти очередной уровень в какой-нибудь игре, то клавиатуру можно было запросто сломать. Учитывая тот факт, что клавиатура крепится к корпусу всего лишь на четыре винта, и место крепления довольно “дохлое”, то клавиатуры ломались.

В этом компьютере было сломано крепление клавиатуры

Клавиатура этого компьютера была отломана от корпуса. Для ремонта и усиления конструкции были использованы детали от детского конструктора.

При наличии прямых рук можно вообще избавиться от “родной” клавиатуры и поставить кошерные герконовые кнопки от ЕС-1841:

Компьютер «Квант» с самодельной герконовой клавиатурой

В отдельных экземплярах компьютера могли быть различия в разъёмах для джойстика и питания – вместо круглых разъёмов ОНЦ ставили какие-то совсем извратные:

Одно время у нас можно было купить пустые корпуса для “Кванта”, в них даже не было отверстия для клавиатуры. Оно и к лучшему – можно было самому поставить какую угодно клавиатуру и сделать для неё аккуратное окно.

Корпус для компьютера «Квант»

В одном компьютере в качестве ПЗУ вообще поставили электрически перепрограммируемые КМ558РР3:

Компьютер «Квант» с КМ558РР3 в качестве ПЗУ

Глюки схемы и доработки компьютера

Для экспериментов по приведению компьютера в человеческий вид был выбран потрёпанный жизнью “Квант”:

Компьютер «Квант», выбранный для бесчеловечных опытов

Первое, что меня поразило при первом знакомстве с “Квантом” – это полное отсутствие привязки видеовыхода к уровню чёрного. Что это такое, я уже говорил в статье про компьютер “Ленинград”. Самый типичный пример – изменение цвета PAPER в зависимости от цвета бордюра при загрузке данных с ленты:

Изменение цвета PAPER в зависимости от цвета BORDER при загрузке с ленты

Немного пояснений: при BORDER=0 все цвета естественные. Как только мы меняем цвет бордюра, цвет экрана становится неправильным.

Надеюсь, эти два видео наглядно показывают что такое отсутствие привязки к уровню черного. К счастью, эта беда в компьютере “Квант” может быть излечена следующим образом:

Выходные мультиплексоры DD40 и DD41 обычно устанавливаются серии КР1533КП12. Для введения привязки к уровню чёрного необходимо в разрыв их выходов включить ключ на элементах “И”, который бы в нужный момент выдавал на видео логические нули, т.е. черный цвет:


КВАНТОВЫЙ КОМПЬЮТЕР И ЧТО ТАКОЕ КВАНТОВЫЙ КОМПЬЮТЕР АНАЛИЗ

В некоторых экземплярах компьютера вместо КР1533КП12 ставили КП2. Это упрощает задачу, т.к. в данном случае можно выкинуть дополнительную микросхему ЛИ1. Схема доработки для этого случая будет такая:


КВАНТОВЫЙ КОМПЬЮТЕР И ЧТО ТАКОЕ КВАНТОВЫЙ КОМПЬЮТЕР АНАЛИЗ

Теперь при работе со старыми советскими телевизорами должны быть нормальные цвета на экране. Но для подключения компьютера к новым телевизорам и ТВ-тюнерам этого мало. У “Кванта” слишком длинный строчный синхроимпульс, что сбивает с толку электронные мозги тюнеров и телевизоров. Поэтому надо строчный синхроимпульс укоротить по следующей схеме:


КВАНТОВЫЙ КОМПЬЮТЕР И ЧТО ТАКОЕ КВАНТОВЫЙ КОМПЬЮТЕР АНАЛИЗ

Подбором сопротивления резистора добиваемся наилучшего качества изображения на экране.

Вышеприведенные схемы были испытаны мной при подключении “Кванта” к компьютерному ТВ-тюнеру через PAL-кодер и показали хорошие результаты.

Но этого мало. Компьютер требует ещё доработок. В “Кванте” шина данных не “подтянута” к +5В через резисторы, что вызывает появление на шине всякого мусора при чтении из несуществующих портов и в цикле подтверждения прерывания. Всё это вызывает глюки в программах. Для устранения этого достаточно припаять к шине данных 8 резисторов сопротивлением порядка 8,2К и подключить их к +5В.

Вторым этапом надо поправить схему выбора Kempston-джойстика. Изначально она сделана следующим образом:


КВАНТОВЫЙ КОМПЬЮТЕР И ЧТО ТАКОЕ КВАНТОВЫЙ КОМПЬЮТЕР АНАЛИЗ

Как видно, из порта kempston-джойстика на шину данных будут выдаваться значения при обращении к любому порту или к ячейке памяти, в адресе которых бит A5=0. А чтобы порт kempston-джойстика не “забивал” шину данных при обращении к памяти, выходы DD7 развязаны с шиной данных через резисторы. Схема явно не самая лучшая. А при “подтягивании” шины данных резисторами к +5В kempston-джойстик и вовсе может перестать работать. Это можно с лёгкостью исправить следующим образом:


КВАНТОВЫЙ КОМПЬЮТЕР И ЧТО ТАКОЕ КВАНТОВЫЙ КОМПЬЮТЕР АНАЛИЗ

Не забываем убрать резисторы R14-R18 и заменить их перемычками.

Третьим этапом надо откорректировать длительность сигнала INT, подаваемого на процессор. Дело в том, что длительность сигнала должна составлять в идеале 8мкс (28 тактов процессора). В “Кванте” же длительность сигнала INT равна длительности кадрового синхроимпульса. Я померял осциллографом и получил 250 мкс, что очень и очень много. Для выработки сигнала INT нужной длительности можно использовать следующие схемы:


КВАНТОВЫЙ КОМПЬЮТЕР И ЧТО ТАКОЕ КВАНТОВЫЙ КОМПЬЮТЕР АНАЛИЗ

Эта схема часто встречается в литературе. Я её сам не пробовал делать.


КВАНТОВЫЙ КОМПЬЮТЕР И ЧТО ТАКОЕ КВАНТОВЫЙ КОМПЬЮТЕР АНАЛИЗ

Эта доработка уже была сделана на одном из моих компьютеров прямо на заводе.


КВАНТОВЫЙ КОМПЬЮТЕР И ЧТО ТАКОЕ КВАНТОВЫЙ КОМПЬЮТЕР АНАЛИЗ

А вот эту схему я делал сам. Она у меня точно работает 🙂

В результате получился доработанный компьютер, который без проблем подключается к PAL-кодеру и безглючно работает 🙂

Компьютер «Квант» со всеми необходимыми доработками

Схемы, мануалы и прочая ерунда

Полноценный универсальный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьёзным развитием квантовой теории в области многих частиц и сложных экспериментов; разработки в данной области связаны с новейшими открытиями и достижениями современной физики. На начало 2020-х годов практически были реализованы лишь единичные экспериментальные системы, исполняющие фиксированные алгоритмы небольшой сложности.

3 бита обычного регистра против 3 кубитов квантового

История квантовых вычислений началась в начале 1980-х годов, когда физик Пол Бениофф предложил квантово-механическую модель машины Тьюринга в 1980 году.

Необходимость в квантовом компьютере возникает тогда, когда мы пытаемся исследовать методами физики сложные многочастичные системы, подобные биологическим. Пространство квантовых состояний таких систем растёт как экспонента от числа составляющих их реальных частиц, что делает невозможным моделирование их поведения на классических компьютерах уже для . Поэтому Визнер и Фейнман высказали идею построения квантового компьютера.

Квантовый компьютер использует для вычисления не обычные (классические) алгоритмы, а процессы квантовой природы, так называемые квантовые алгоритмы, использующие квантовомеханические эффекты, — такие как квантовый параллелизм и квантовая запутанность.

Если классический процессор в каждый момент может находиться ровно в одном из состояний (обозначения Дирака), то квантовый процессор в каждый момент находится одновременно во всех этих базисных состояниях, при этом в каждом состоянии  — со своей комплексной амплитудой . Это квантовое состояние называется «квантовой суперпозицией» данных классических состояний и обозначается как

Квантовое состояние может изменяться во времени двумя принципиально различными путями:

Если классические состояния есть пространственные положения группы электронов в квантовых точках, управляемых внешним полем , то унитарная операция есть решение уравнения Шрёдингера для этого потенциала.

Измерение есть случайная величина, принимающая значения с вероятностями соответственно. В этом состоит квантовомеханическое правило Борна. Измерение есть единственная возможность получения информации о квантовом состоянии, так как значения нам непосредственно недоступны. Измерение квантового состояния не может быть сведено к унитарной шрёдингеровской эволюции, так как, в отличие от последней, оно необратимо. При измерении происходит так называемый коллапс волновой функции , физическая природа которого до конца не ясна. Спонтанные вредоносные измерения состояния в ходе вычисления ведут к декогерентности, то есть отклонению от унитарной эволюции, что является главным препятствием при построении квантового компьютера (см. физические реализации квантовых компьютеров).

Квантовое вычисление есть контролируемая классическим управляющим компьютером последовательность унитарных операций простого вида (над одним, двумя или тремя кубитами). В конце вычисления состояние квантового процессора измеряется, что и даёт искомый результат вычисления.

Основная статья: Кубит

Идея квантовых вычислений состоит в том, что квантовая система из L двухуровневых квантовых элементов (квантовых битов, кубитов) имеет 2L линейно независимых состояний, а значит, вследствие принципа квантовой суперпозиции, пространство состояний такого квантового регистра является 2L-мерным гильбертовым пространством. Операция в квантовых вычислениях соответствует повороту вектора состояния регистра в этом пространстве. Таким образом, квантовое вычислительное устройство размером L кубитов фактически задействует одновременно 2L классических состояний.

Физическими системами, реализующими кубиты, могут быть любые объекты, имеющие два квантовых состояния: поляризационные состояния фотонов, электронные состояния изолированных атомов или ионов, спиновые состояния ядер атомов, и так далее.

Имеется кубит в квантовом состоянии
В этом случае вероятность получить при измерении

В данном случае при измерении мы получили 0 с вероятностью 0,64.
В результате измерения кубит переходит в новое квантовое состояние , то есть при следующем измерении этого кубита мы получим 0 с единичной вероятностью (предполагается, что по умолчанию унитарная операция тождественна; в реальных системах это не всегда так).

Если измерить только первый кубит квантовой системы, находящейся в состоянии , получится:

В первом случае измерение даст состояние , во втором — состояние .

Результат такого измерения невозможно записать как вектор в гильбертовом пространстве состояний. Такое состояние, в котором участвует наше незнание о том, какой же результат получится на первом кубите, называют смешанным состоянием. В нашем случае такое смешанное состояние называют проекцией исходного состояния на второй кубит и записывают в виде матрицы плотности вида , где матрица плотности состояния определяется как .

Таким образом, одна операция над группой кубитов вычисляется сразу над всеми возможными её значениями, в отличие от группы классических битов, когда может быть использовано лишь одно текущее значение. Это и обеспечивает беспрецедентный параллелизм вычислений.

Упрощённая схема вычисления на квантовом компьютере выглядит так: берётся система кубитов, на которой записывается начальное состояние. Затем состояние системы или её подсистем изменяется посредством унитарных преобразований, выполняющих те или иные логические операции. В конце измеряется значение, и это результат работы компьютера. Роль проводов классического компьютера играют кубиты, а роль логических блоков классического компьютера играют унитарные преобразования. Такая концепция квантового процессора и квантовых логических вентилей была предложена в 1989 году Дэвидом Дойчем. Также Дэвид Дойч в 1995 году нашёл универсальный логический блок, с помощью которого можно выполнять любые квантовые вычисления.

Оказывается, что для построения любого вычисления достаточно двух базовых операций. Квантовая система даёт результат, только с некоторой вероятностью являющийся правильным. Но за счёт небольшого увеличения операций в алгоритме можно сколь угодно приблизить вероятность получения правильного результата к единице.

Большая часть современных ЭВМ работают по такой же схеме: n битов памяти хранят состояние и каждый такт времени изменяются процессором. В квантовом случае система из n кубитов находится в состоянии, являющемся суперпозицией всех базовых состояний, поэтому изменение системы касается всех 2n базовых состояний одновременно. Теоретически новая схема может работать намного (в экспоненциальное число раз) быстрее классической. Практически, например, квантовый алгоритм Гровера поиска в базе данных показывает квадратичный прирост мощности против классических алгоритмов.

Основные квантовые алгоритмы:

Пример реализации операции CNOT на зарядовых состояниях электрона в квантовых точках

Один кубит можно представить в виде электрона в двухъямном потенциале, так что означает нахождение его в левой яме, а  — в правой. Это называется кубит на зарядовых состояниях. Общий вид квантового состояния такого электрона: . Зависимость его от времени есть зависимость от времени амплитуд ; она задаётся уравнением Шрёдингера вида , где гамильтониан имеет в силу одинакового вида ям и эрмитовости вид
для некоторой константы , так что вектор есть собственный вектор этого гамильтониана с собственным значением 0 (так называемое основное состояние), а  — собственный вектор со значением (первое возбуждённое состояние). Никаких других собственных состояний (с определённым значением энергии) здесь нет, так как наша задача двумерная.

Поскольку каждое состояние переходит за время в состояние , то для реализации операции NOT (перехода и наоборот достаточно просто подождать время . То есть операция NOT реализуется просто естественной квантовой эволюцией кубита при условии, что внешний потенциал задаёт двухъямную структуру; это делается с помощью технологии квантовых точек.

Для реализации CNOT надо расположить два кубита (то есть две пары ям) перпендикулярно друг другу и в каждой из них расположить по отдельному электрону. Тогда константа для первой (управляемой) пары ям будет зависеть от того, в каком состоянии находится электрон во второй (управляющей) паре ям: если ближе к первой, то будет больше, если дальше — меньше. Поэтому состояние электрона во второй паре определяет время совершения NOT в первой яме, что позволяет снова выбрать нужную длительность времени для реализации операции CNOT.

Эта схема очень приблизительная и идеализирована; реальные схемы сложнее, и их реализация представляет вызов экспериментальной физике.

Алгоритм телепортации реализует точный перенос состояния одного кубита (или системы) на другой. В простейшей схеме используются 3 кубита: телепортируемый кубит и запутанная пара, один кубит которой находится на другой стороне. Отметим, что в результате работы алгоритма первоначальное состояние источника разрушится — это пример действия общего принципа невозможности клонирования — невозможно создать точную копию квантового состояния, не разрушив оригинал. Не получится скопировать произвольное состояние, и телепортация — замена этой операции.

Телепортация позволяет передавать квантовое состояние системы с помощью обычных классических каналов связи. Таким образом можно, в частности, получить связанное состояние системы, состоящей из подсистем, удалённых на большое расстояние. Это позволяет построить системы связи, в принципе не поддающиеся прослушиванию (на отрезке между «квантовыми» устройствами).

Приложения к криптографии

Практическое осуществление квантового компьютера основано на манипулировании на микроскопическом уровне и с грандиозной точностью многоэлементной физической системой с непрерывными степенями свободы. Очевидно, что для достаточно большой системы, квантовой или классической, эта задача становится невыполнимой, именно поэтому такие системы переходит из ведения микроскопической физики в область статистической физики. Представляет ли система из N = 103÷105 квантовых спинов, необходимая чтобы превзойти классический компьютер в решении ограниченного числа специальных задач, достаточно большой в этом смысле? Сможем ли мы когда-либо научиться контролировать 10300 (по меньшей мере) амплитуд, определяющих квантовое состояние такой системы? Мой ответ — нет, никогда.

Принципы физической реализации

Главные технологии для квантового компьютера:

Основные проблемы, связанные с созданием и применением квантовых компьютеров:

На рубеже XX—XXI веков во многих научных лабораториях были созданы однокубитные квантовые процессоры (по существу, управляемые двухуровневые системы, в которых можно было предполагать возможность масштабирования на много кубитов).

В 2021 году группы китайских учёных под руководством Пань Цзяньвэя создали два прототипа квантовых компьютеров:

Адиабатические компьютеры D-Wave

У этого термина существуют и другие значения, см. Квант (значения).

Не следует путать с одноимённым производителем автономной энергетики (солнечных батарей, аккумуляторов и т. п.)

ООО «Квант» — российская компания, специализирующаяся на сборочном производстве электроники (компьютеров, телевизоров, мониторов, навигационных систем).

Квантовая физика родилась в 1900 году, когда Макс Планк предположил, что энергия поглощается не непрерывно, а отдельными порциями — квантами. Его идея получила дальнейшее развитие: фотоэлектрический эффект Эйнштейна, теория атома Бора, Резерфорд опытным путем показал, как выглядит ядро атома, Луи де Бройль стер границу между волнами и материей, Гейзенберг и Шрёдингер разработали квантовую механику.

Квантовую физику тяжело понять — её математический аппарат почти невозможно перевести на «человеческий» язык. Но «потрогать» её проявления в повседневной жизни вполне реально: лазеры, флэшки, компакт-диски, интегральные схемы или графен — все эти технологии появились благодаря квантовой физике. Логично, что ее решили использовать и для вычислений — в квантовых компьютерах.

Квантовые компьютеры кардинально отличаются от обычных: они обрабатывают информацию на порядок быстрее, а памяти у них больше экспоненциально. Уже сейчас экспериментальные образцы решают некоторые задачи быстрее, чем самые мощные суперкомпьютеры. Перспективы от внедрения квантовых компьютеров манят. С их помощью можно создать новые лекарства, композитные материалы прочнее титана и легче пластика, сверхпроводники, которые работают при комнатной температуре, добиться абсолютной безопасности шифрования или разработать универсальный искусственный интеллект. Но в реальности всё не так радужно. Всё потому, что мы пока не понимаем, что действительно умеет квантовый компьютер.

Анатолий Дымарский (Сколтех) — физик-теоретик, работает в области физики квантовых систем. Анатолий расскажет, чем квантовый компьютер отличается от обычного и что сулят его возможности IT-индустрии.

Как работает обычный компьютер

Чтобы объяснить, что такое квантовый компьютер и как он работает, нужно начать издалека и рассказать, как работает компьютер обычный. Работа обычного компьютера определяется двумя параметрами: памятью, скоростью вычислений.

Память — основная характеристика вычислительной системы. Компьютер умеет читать, писать и обрабатывать информацию, которая хранится в памяти.

Компьютер выполняет простейшие операции: перемножения, вычитания, сложения чисел. Если выполнять эти операции много и быстро, то можно объединить их в программу, которая обрабатывает информацию. Так работают базы данных, поиск или нейронные сети. Здесь важна скорость вычислений или скорость выполнения операций (FLOPS).

Есть еще третий (дополнительный) параметр — детерминизм, общая характеристика для всех вычислительных систем. Означает, что все машины работают по программе, которая однозначна — ноль всегда ноль, а единица это точно единица. Никаких иных толкований не предусмотрено и нет элемента неопределенности.

Неопределенность можно внести только на уровне входных данных, например, случайными числами. Ввод может быть случайным, но программа всегда однозначно обрабатывает все входящие данные.

Как работает квантовый компьютер

Он работает иначе — по интуитивно непонятной логике. Как и обычный, он проводит вычисления, но в его основе лежат законы квантовой механики.

Классический мир и классическая механика детерминистичны. Это значит, что значение любого регистра памяти в компьютере всегда 0 или 1, а тарелка всегда либо целая, либо разбита.

В квантово-механической системе нет такой четкости, а есть вероятность, которая определяет ее суть. Правильный вопрос здесь — какова вероятность, что тарелки разбились или целы, какова вероятность, что значения регистра 0 или 1?


КВАНТОВЫЙ КОМПЬЮТЕР И ЧТО ТАКОЕ КВАНТОВЫЙ КОМПЬЮТЕР АНАЛИЗ

Вероятность — первое важное понятие в квантовой механике. С точки зрения квантовой механики «тарелки Шредингера» одновременно и целые, и разбитые. Есть некая вероятность того, что они целые, и некоторая вероятность, что разбитые. Эта неопределенность и отражает реальный физический мир.

На классическом уровне неопределенность маскирует наше незнание. Например, когда мы покупаем лотерейный билет «Спортлото», для нас появляется вероятность выиграть, потому что мы не знаем выигрышный номер.

Для классической физики лотерея — это не вероятностный процесс. Всегда можно описать движение руки, которая запускает барабан, скорость и траекторию каждого шарика. Теоретически, можно угадать выигрышный номер (хотя практически — сложно). В квантовой механике даже теоретически нельзя угадать, что произойдет в следующую секунду. Мы можем только предсказать это с точки зрения вероятности.

Второе понятие — принцип суперпозиции. Обычный бит находится только в значениях 0 или 1. В квантовых компьютерах нет обычных битов, а есть квантовые — кубиты. Квантовый бит находится в состоянии 0 или 1 с какой-то вероятностью. Кубит может находиться одновременно в этих состояниях, притом в разных комбинациях — в суперпозиции этих состояний.

Когда система (кубит) находится одновременно в состоянии 0 или 1, можно говорить только о вероятностях. Если состояний много, система одновременно находится во всех возможных состояниях, но с меньшей вероятностью для каждого. Это принципиально важно.

В классической программе в каждый конкретный момент времени каждая строка программы работает с определенной ячейкой памяти. В квантовой механике можно работать со всеми ячейками памяти одновременно.

«Память» квантового компьютера

В чем основная разница между квантовой и классической памятью компьютера? В обычном компьютере мы записываем числа в двоичном коде. Например, число 8 в двоичной системе выглядит как 00001000, и для его записи достаточно 4 битов.

В квантовых компьютерах кубиты находятся в состоянии 0 или 1 с какой-то вероятностью. Вероятность — это число. Чтобы записать одно число с бесконечной точностью, нужно бесконечное количество битов. Поэтому, в теории, один кубит — это физическая система с бесконечным количеством памяти.

На практике у методов измерения ограниченная точность. Будем считать, что она соответствует обычной машинной (float). Получается, что кубит содержит два числа: вероятности, что кубит в состоянии 0 и в состоянии 1.

Примечание: для упрощения мы игнорируем, что сумма вероятностей кубита в состоянии 0 и 1 должна равняться единице. Основной вывод не зависит от упрощения.

Один кубит соответствует двум вещественным числам (float). Это большой выигрыш, потому что для двух вещественных чисел на обычном компьютере нужно два машинных слова — 128 обычных битов, а мы обошлись одним квантовым. Может показаться, что квантовый компьютер в 128 раз лучше обычного. Но это не так.

Квантовый компьютер экспоненциально лучше обычного.

Один кубит это 2 вещественных числа. Два кубита — 4 вещественных числа. Но восемь кубитов это 256 потенциальных конфигураций восьми нулей и единиц — два в восьмой степени.

Для одного кубита выигрыш в 128 раз, а для восьми кубитов он существенно больше — 256*128. Система n кубитов в памяти эквивалентна

Емкость квантовой памяти растет в геометрической прогрессии.

Память обычного ноутбука эквивалентна 15 кубитам, 40 кубитов равны памяти самых мощных вычислительных центров, а 50-60 кубитов превышают суммарную память всех вычислительных центров всего мира.

Три-четыре кубита эквивалентны увеличению обычной классической памяти в 10-20 раз. Квантовая память значительно более емкая, чем любые другие классические способы записи информации. В этом главный потенциал квантовых вычислений.

Но экспоненциальный рост емкости квантовой памяти вызывает проблему размерности. Из-за проклятия размерности сложно описать такую квантовую систему на классическом компьютере — требуется все больше и больше памяти.

Какие задачи может решить квантовый компьютер

Если квантовый мир работает на уровне неопределенности, как вообще возможно что-то посчитать? У квантовой механики вероятностная природа, а нам нужен точный ответ. Как все будет работать, если нужно просто перемножить два числа?

Объясню на примере задач класса NP, то есть задач разрешимости, решение которых невозможно найти за полиномиальное время — во всяком случае, в предположении

. Однако, правильность решения за полиномиальное время проверить можно. Это похоже на взлом закрытого замка: мы не умеем пользоваться отмычками, но можем быстро проверить любой ключ, если он есть.

Благодаря принципу суперпозиции квантовая система находится сразу во всех состояниях и ищет лучший вариант. Однозначного ответа система не дает, но повышает вероятность того, что лучший вариант является решением. Когда система остановится на каком-то решении, мы сможем довольно быстро проверить его на правильность.

Если окажется, что ответ неверен, запустим квантовый компьютер еще раз. Вероятность получения правильного ответа больше 50%, а часто гораздо больше. Значит, за 2-4 запуска квантового алгоритма мы получим правильный ответ.

У нас не будет однозначного ответа, а только вероятность получить правильный ответ. Но эта вероятность весьма высока. Фактически, мы гадаем, но не на кофейной гуще, а на научной. За несколько итераций мы найдем ответ и проверим, что он правильный.

Параметры квантового компьютера

У классического компьютера два параметра качества: объем памяти и количество операций. С обычным компьютером мы по умолчанию предполагаем, что у нас есть доступ ко всем ячейкам памяти для записи и чтения.

В квантовом случае есть три параметра.

Объем памяти или количество кубит. Чем больше памяти, тем лучше? Для квантового компьютера нет — когда мы увеличиваем количество кубит, растет сложность квантовой системы. Систему становится тяжело поддерживать в изолированном состоянии.

Время работы или количество последовательных операций (когерентность). Систему обязательно требуется поддерживать в изолированном состоянии — в физике это называется когерентность. Если позволить квантовой системе взаимодействовать с окружающей средой, то это разрушит состояние ячеек квантовой памяти. Вместо нулей и единиц будет просто шум.

Мы пытаемся поддерживать систему изолированной как можно дольше. Но чем больше квантовых операций проводим, тем больше времени на них уходит, а значит все сложнее поддерживать систему в изолированном состоянии.

Примечание: здесь количество операций не в секунду, а за все время работы системы.

Возникает парадокс: чем больше кубитов, тем меньше операций доступно. Поэтому время, в течении которого можно держать систему изолированной и произвести некоторое количество операций, это важный параметр.

Представьте обычный компьютер, в котором нет охлаждения. Пока компьютер не перегреется, у него есть время что-то посчитать, а потом он отключается. Примерно то же самое происходит в квантовом компьютере. В нем нет «вентилятора»: чем больше работает, тем больше нагревается, пока не разрушится. Поэтому есть ограничение на количество операций.

Универсальность. В классическом компьютере доступны любые операции: умножение, деление, вычитание. Теоретически, в квантовом тоже. Но на практике, существенно проще проводить операции только с соседними кубитами, которые расположены на прямой, в прямоугольном или квадратном массиве. Для работы со всеми кубитами требуется очень сложная архитектура — на практике пока так не умеют.


КВАНТОВЫЙ КОМПЬЮТЕР И ЧТО ТАКОЕ КВАНТОВЫЙ КОМПЬЮТЕР АНАЛИЗ

Все три направления конфликтуют друг с другом. Мы можем улучшить одно, но это произойдет за счет ухудшения двух других. Сейчас, когда технология в зачаточном состоянии, можно выделить несколько прототипных платформ, и каждая из них пытается улучшить показатели одного направления за счет двух других.

Прототипы

Выделю три прототипа, над которыми работают крупные компании. Google, IBM, Intel, Microsoft вкладываются в развитие квантовых компьютеров. Все вместе они вложили больше 500 млн долларов в разработку, лаборатории и исследовательские центры.

Первые классические компьютеры занимали целые комнаты, работали на вакуумных лампах и так нагревались, что для них требовалось отдельное мощное охлаждение. Квантовые компьютеры на них очень похожи — это шкафы высотой по 3 метра, большую часть которых занимают системы охлаждения. Компьютеры охлаждают до температуры близкой к абсолютному нулю, чтобы квантовые системы могли выполнять свои вычислительные функции.

Универсальные квантовые компьютеры

Это универсальные машины от Google и IBM с памятью примерно 20 кубит. Они выполняют любые операции, потому что полная универсальность доступна с относительно небольшим числом кубитов, дальше возникает практическое ограничение. Возможно, через год люди научатся работать с 30-40 кубитами.

Универсальные квантовые компьютеры способны реализовать произвольные квантовые алгоритмы, например, алгоритмы Шора и Гровера.

Современная криптография основана на разложении чисел на простые множители. В настоящее время неизвестно, существует ли полиномиальный не квантовый алгоритм для задачи факторизации. Однако 25 лет назад Питер Шор опубликовал статью, в которой объяснил, как квантовый компьютер может разложить очень большое целое число на простые множители.

Квантовый алгоритм компьютера работает не детерминистически, а угадывает простые множители с вероятностью правильного ответа больше 50% и находит простые множители экспоненциально быстрее, чем обычный.

С распространением квантовых компьютеров все современные методы шифрования окажутся уязвимы, и это основная мотивация в разработке квантовых алгоритмов последние 25 лет. Но пока применить метод Шора пока сложно, потому что алгоритм требует большой квантовый компьютер. Маленькие решают задачу только для небольших чисел.

Другим примером, демонстрирующим потенциал квантовых вычислений, является Алгоритм Гровера для задачи перебора или поиска решения уравнения

какая-то сложная функция.

Кроме упомянутых выше алгоритмов Шора и Гравера есть большое количество других квантовых алгоритмов. Любая физическая система хочет перейти в состояние равновесия — квантовая не исключение. С научной точки зрения правильнее говорить не о равновесии, а об основном состоянии системы. Классический аналог — состояние покоя. Система всегда стремится перейти в состояние покоя с минимальной энергией. В терминах вычислительных задач — это оптимизационная задача минимизации энергии. Квантовый компьютер как раз может решать подобные задачи.

Вся область применимости квантовых алгоритмов и компьютеров пока не понятна. Но уже есть десятки различных оптимизационных задач, с которыми квантовые компьютеры и алгоритмы могут справиться, и находятся новые.

Квантовые симуляторы ограниченной универсальности

Это другое направление: универсальность ограничивается, но поддерживается изоляция (когерентность). Это компьютеры на рубеже в 50-70 кубитов, что в смысле памяти уже больше, чем любой суперкомпьютер.

На этой границе возможности специализированного квантового компьютера превосходят возможности классического — возникает квантовое превосходство. Это значит, что квантовые компьютеры могут решать некоторые задачи, на которые у обычных (даже суперкомпьютеров) уйдут десятки, сотни или тысячи лет.

В октябре 2019 Google заявил, что достиг квантового превосходства. Новость появилась во всех ведущих газетах и журналах, соответствующая научная статья была опубликована в Nature. Тематические статьи выпустили многие газеты, даже New York Times и Wall Street Journal, которые далеки от науки.

В реальности Google разработал квантовый процессор с ограниченной универсальностью. У него достаточно большое количество кубитов, и он может выполнять некоторые узкие задачи лучше, чем любой классический компьютер. Другой вопрос, что это очень узкие и искусственные задачи.

Некогерентные процессоры с числом кубитов от 2 тысяч

Если забыть про универсальность и когерентность, можно добавлять 2 или даже 3-4 тысячи кубитов. Этим направлением занимается компания D-Wave из Канады. У них есть процессоры с тысячей кубитов, но без когерентности.

Возможные области применения квантовых компьютеров

Одна большая потенциальная область применения — это криптография. Вторая — оптимизационные задачи, которые возникают в самых разных областях.

Наука. Квантовые вычисления могут помочь предсказывать поведение элементарных частиц, моделировать молекулы ДНК или разрабатывать новые лекарственные препараты. Например, квантовые вычисления пытаются применять в фармакологии. Для этого нужно понимать, какую форму принимают разные протеины (про которые можно думать, как про микроскопические квантовые объекты). Мы не знаем, как они себя будут вести, но самый простой способ это понять — симулировать их поведение на квантовом компьютере. У этой научной задачи огромный бизнес-потенциал: новые лекарства, добавки, антибиотики.

Новые материалы. В науке о материалах главное — понять взаимодействие атомов, что можно смоделировать на квантовых компьютерах. Это тоже научная задача, но создав новый материал, его уже можно продавать.

Машинное обучение и искусственный интеллект. Машинное обучение — сложный процесс, который требует огромного количества вычислений. Пока здесь нет практической пользы от квантовых компьютеров, потому что они сейчас не на том уровне развития. Но в перспективе, квантовые компьютеры могут ускорить стандартные алгоритмы. В некоторых случаях это выглядит революционно, потому что можно в десятки раз сократить время обучения нейросети.

Транспорт, энергетика, логистика. В этих сферах много оптимизационных задач. Например, в энергетике главная проблема — распределение электрической энергии по стране. Цена на электричество в разных регионах отличается, при этом во время передачи часть энергии теряется, а с ней и прибыль. Чтобы заработать больше денег, бизнес пытается оптимизировать передачу. Это одна из тех задач, которая находится в классе NP. Сложно найти правильное решение, но квантовый компьютер может помочь.

Бизнес-приложения. В бизнесе квантовыми вычислениями занимаются только большие компании, корпорации. У гигантов есть деньги и ресурсы, например, у Google, D-Wave или IBM (лидер области с большими наработками).

На сайте компании D-Wave написано, что уже в 150 бизнес-приложениях используются квантовые вычисления. I BM выпустил брошюру, в которой обсуждается, что можно сделать с помощью квантового компьютера. Это десятки различных индустрий и потенциально сотни бизнес-решений. Так все выглядит на бумаге.


КВАНТОВЫЙ КОМПЬЮТЕР И ЧТО ТАКОЕ КВАНТОВЫЙ КОМПЬЮТЕР АНАЛИЗ

В реальности все немного иначе. Развитие технологий сейчас пока не на том уровне, чтобы применять их на практике.

Что значит квантовая революция для IT-индустрии

Пока что ничего. Мы находимся в так называемой эре NISQ — Noisy Intermediate-Scale Quantum technology. Это значит, что сейчас нет таких квантовых устройств, которые могли бы соперничать с классическими компьютерами. Пока нельзя создать квантовую систему, которая по всем параметрам превзойдет классическую: достаточно небольшую, универсальную и изолированную. Пока получаются только системы, которые выполняют узкоспециальные задачи определенного сорта лучше, чем вычислительный кластер. Квантовые технологии пока непрактичны. Хотелось бы использовать этот огромный потенциал для своих ежедневных задач, но неизвестно, как это сделать.

У квантовых технологий огромный «подрывной потенциал». Если научиться хорошо решать хотя бы одну из оптимизационных задач, о которых говорилось выше, это изменит одну конкретную индустрию, как минимум. Надеюсь, что через 5-10 лет в некоторых направлениях ситуация изменится.

Многие компании создают прообразы настоящих квантовых компьютеров — они уже что-то умеют делать, но пока этого недостаточно.

В Сколтехе мы пытаемся ответить на главный вопрос — как и для чего можно использовать квантовый компьютер. С моими коллегами Владимиром Антоновым и Олегом Астафьевым трудимся над проектом, в рамках которого работаем над маленьким квантовым компьютером. К сожалению, часть архитектурных и дизайнерских вопросов еще не решены, потому что мы все еще не уверены, какие именно задачи должен будет решать этот компьютер. Если этот вопрос вам интересен, приглашаю его обсудить.

То, с каким интересом участники HighLoad++ восприняли доклад о квантовых компьютерах и АЭС, натолкнуло нас на мысль уделить большее внимание подобным темам на наших конференциях. Поэтому на РИТ++ в мае в онлайне у нас будут секции научпопа и применения IT в смежных областях. И это только малая часть новинок фестиваля «Российские интернет-технологии» — подробнее смотрите на сайте и в рассылке.

Про урокцифры:  АНАЛИТИЧЕСКИЙ ЦЕНТР НАФИ ЗАПУСТИЛ ПРОЕКТ ЕЖЕДНЕВНЫХ ОПРОСОВ ЦИФРЫ ДНЯ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *