по технологии и методам оптимизации приема

This article is about wireless communication. For other uses, see MIMO (disambiguation).

Parts of this article (those related to 5G) need to be updated. Please help update this article to reflect recent events or newly available information.

MIMO exploits multipath propagation to multiply link capacity.

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 августа 2023 года; проверки требуют 36 правок.

MIMO (англ. Multiple Input Multiple Output) — метод пространственного кодирования сигнала, позволяющий увеличить полосу пропускания канала, в котором передача данных и прием данных осуществляются системами из нескольких антенн. Передающие и приёмные антенны разносят так, чтобы интерференция между соседними антеннами была слабой.

Время на прочтение


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

Прорыв последних лет в области беспроводных стандартов и технологий связи обязан, по сути, одной технологии — MIMO. Предложенная теория очень удачно подошла под активно осваиваемую технологию OFDM и именно эта связка позволила получить сегодняшние 802.11n/ac, LTE и т.д. В статье я попытаюсь объяснить за счет чего происходит увеличение скорости при использовании многоантенных систем и постараюсь описать без сложных формул и схем принцип работы систем MIMO-OFDM.
В качестве вступления хочу порекомендовать вам ознакомиться с работой товарища tgx, где очень красиво объясняется что такое OFDM, дается немного понятий из теории связи.
Не влезая в специфические термины коротко свойства системы связи можно описать 2 пунктами: помехоустойчивость(ПУ) и пропускная способность(ПП). Несмотря на то, что сегодня мы все меряем скоростями передачами(пропускная способность — максимальная скорость обеспечиваемая системой связи) во главу угла поставлена именно достоверность передачи (показатель: вероятность ошибки). В любой системе всегда существует механизм обмена ПП на ПУ. Именно поэтому при резком ухудшении условий передачи (вы ушли с ноутбуком из кабинета на кухню) вы получаете в своем браузере не кракозябры(хотя скорее всего и их вы не увидите), а замечаете снижение скорости.
Еще не так давно главным способом выжимания заветных децибел было усовершенствование сигнально-кодовых конструкций и методов помехоустойчивого кодирования. M IMO сделало казалось невозможное: не меняя полосу частот, энергетику сигналов, только за счет физического увеличения количества антенн и усложнения методов обработки удалось увеличить теоретическую ПП и ПУ систем связи в разы. Так уж сложилось, что нормальной литературы на русском языке практически нет, автору приходилось заниматься обработкой литературы англоязычной.

Про урокцифры:  Что такое урок цифры по математике

Классификация систем MIMO

Логически правильно было бы разделить системы MIMO, как системы с многими входами и многими выходами по типу использования этой пространственной избыточности.


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

Тему ПВК я постарался раскрыть здесь.
BF(Beamforming-формирование луча) — перспектива развития систем MIMO. Смысл заключается в использовании ЦАР (Цифровая Антенная Решетка), которые позволяют динамически изменять диаграмму направленности. Как это можно применить? Формирование нескольких лучей — имитация многоантенной системы, т.е. нет необходимости городить огород из классических антенн. Автоматическая подстройка под местоположение приемника позволяет давать большую энергетику на приемнике и следовательно увеличить ПУ и как следствие ПП.

Пространственное мультиплексирование

Математически, сигнал на приемнике после прохождения через радиоканал представляет собой сумму произведения исходного сигнала и некоторой комплексной передаточной функции(КПФ) и шума. Пресловутые замирания возникающие в радиоканале как раз и составляют КПФ. Закон распределения КПФ, как случайной величины, определяет наличие прямой видимости между передатчиком и приемником и факторы влияющие на многолучевое распространение сигнала (стены в квартире, дома в городе и т.д.) В нашем случае наиболее универсальным будет случай отсутствия прямой видимости — Релеевские замирания.
Так как в системе присутствуют несколько антенн, то пути проходимые сигналами с разных антенн тоже разные, следовательно разными будут и их КПФ для каждой пары передатчик-приемник. Это принципиально важный момент. Исходя из структуры системы КПФ всех её подканалов можно свести в матрицу.
А теперь самое интересное. Получается что каждый канал имеет свои характеристики отличающиеся от соседних, следовательно сигнал переданный по нему можно однозначно отделить от сигналов переданных по другим каналам переданных в этой же полосе частот.
Математика MIMO, а именно алгоритмы принятия решения довольно непростые, но все они построены на знании КПФ на приемной стороне. Но как это реализовать, если на определенной частоте мы передаем информацию, а это случайная величина? Самое эффективное решение — введение в структуру сигнала пилотов — сигналов с заранее известными параметрами с помощью которых можно проводить оценку канала.

Оценка канала

OFDM технология уникальная, помимо отличных показателей ЧЭЭ (частотно-энергетической эффективности), беспрецедентной помехозащищенности(не путать с помехоустойчивостью) и гибкости она как нельзя кстати подходит под концепцию MIMO. Структура OFDM представляет собой набор промодулированных поднесущих, расположенных на фиксированном расстоянии друг от друга в частотном спектре.
В силу того, что реальные каналы частотно-селективны (КПФ даже соседних поднесущих могут иметь большую разницу), некоторые из подканалов используются в целях оценки канала. Для этого пилотные поднесущие модулируются ФМ-2 (Фазовая модуляция с позиционностью 2, позволяет передавать 1 бит) псевдослучайной последовательностью известной на приеме. Выбор расположения этих поднесущих также не случаен: учитывается равномерность их распределения в частной и временной области (причины в различных видах помех).


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

На приемной стороне шаблон пилот-несущей делят на принятый вариант, и как итог, мы получаем КПФ канала для пилот-несущей. Дальше производится аппроксимация полученных значений для информационных подканалов.
Цель достигнута: КПФ канала найдены для всех поднесущих и можно возвращаться к MIMO.

Обработка сигнала

Существует большое количество методов обработки полученного сигнала, но самый простой по сути и самый ресурсоемкий это ML (Maximum Likehood — максимального правдоподобия).
Решение о принятом сигнале принимается по минимальной разнице между вычисленным значением сигнала и принятой реализацией прямым перебором по всем подканалам и возможным сигналам.


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

Представленный алгоритм довольно сильно упрощен, однако, позволяет наглядно объяснить «откуда взялась скорость» и как «приемник понимает какой сигнал от какой антенны пришел».

Заключение

На самом деле представленные материалы в этой статье это верхушка айсберга. Алгоритм ML на практике не используется, так как требует очень много ресурсов. Значительным усовершенствованием его стал алгоритм сферического декодирования. Современные системы связи уверенно движутся в сторону адаптивности скорости помехоустойчивых кодов, позиционности модуляции, beamforming и скорости пространственного кодирования. Все эти методы выжимают радиоканал по-максимуму. По теме пространственной обработки очень перспективной мне кажется идея сингулярной обработки(предкодинга) сигнала вместе с использованием «водонаполняемого» решения на основе известной оценки канала на передаче.

Литература


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

Одной из ключевых технологий для развития беспроводных сетей (например, Wi-Fi) в последние годы является технология MIMO. M IMO — это множественная передача информации с нескольких передатчиков и её получение, а также обработка на нескольких приемниках. Основные задачи MIMO – повысить пропускную способность беспроводного канала и качество связи.

Главным методом увеличения пропускной способности в системах MIMO является мультиплексирование, то есть параллельная передача нескольких потоков информации с разных антенн (о нем ниже). Частными случаями MIMO являются системы передачи, где на приемнике или передатчике используется одна антенна. Называются такие системы Multiple-input single-output (MISO) и Single-input multiple-output (SIMO). В них нельзя организовать параллельную передачу нескольких потоков информации, однако можно использовать дополнительные антенны для повышения качества приёма или передачи сигнала. В описании точек доступа различных вендоров мы можем узнать сколько передающих и приемных антенн есть на устройстве, сколько пространственных потоков MIMO оно поддерживает. Например, это может быть значение 3×4:3, что означает 3 передатчика, 4 приемника и 3 пространственных потока. Кроме этих параметров можно встретить такие аббревиатуры или обозначения, как MRC, STBC, CSD, 802.11ac Tx BF и пр. Все эти технологии также направлены на улучшение качества сигнала. Итак, давайте попробуем разобраться какие варианты ухищрений используют современные точки доступа, чтобы ваш девайс получил хороший сигнал. Стоит отметить, что на Хабре уже есть статьи с довольно подробным описанием работы указанных технологий — MIMO, OFDM, STBC и MRC. В данном материале хотели бы сделать общий обзор по технологиям повышения качества связи, наглядно отобразить, как работает та или иная функция и какой прирост она дает. Рассмотрена работа с точки зрения 802.11 Wi-Fi, хотя, разумеется, указанные методы используются и в других беспроводных стандартах (LTE, 802.16 WiMAX).

Пространственное мультиплексирование (MIMO SDM)

Ключевым преимуществом MIMO является возможность передавать несколько независимых информационных потоков с разных антенн на одном канале. Это позволяет кардинально увеличить пропускную способность беспроводного канала. Технология называется пространственное мультиплексирование, или SDM (Spatial Division Multiplexing). Основным условием для работы MIMO SDM является многолучевое распространение сигнала. Если мы отправим данные с двух антенн, при прямой видимости сигнал придет к получателю одновременно, и мы получим их наложение (интерференцию). А значит сделаем только хуже. Но если при прохождении сигнал отражается, преломляется и т.п., получатель может распознать (скоррелировать) пришедший сигнал для разных потоков. Затем, получатель вычисляет текущее состояние каналов передачи (потоков) для каждой из передающих антенн на основе предварительной калибровки (по служебным заголовкам). И далее с помощью математических преобразований, восстанавливает исходные потоки. В случае MIMO отправитель не знает о состоянии канала, то есть он никак не оптимизирует сигнал при передаче. Точка доступа и клиент передают определенное количество потоков, поддерживаемое двумя сторонами. Например, если клиент поддерживает только один поток, точка доступа тоже будет передавать единственный поток.

Стоит отметить, что при передаче нескольких потоков (да и вообще при одновременной передаче с нескольких антенн) общая излучаемая мощность делится на количество передающих антенн. Например, если мы передаём сигнал одновременно с двух антенн, то мощность сигнала для каждой из них будет в два раза меньше максимальной. Однако, в данном случае мы передаем информацию по двум или более каналам одновременно. Также, за счет совместного использования SDM и множественной передачи (об этом ниже) можно увеличить значение SNR (отношение сигнал-шум) на приемнике.


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

Развитие механизмов множественной передачиприема разумеется привело к увеличению количества антенн на 802.11n-устройствах. Сегодня для точек доступа корпоративного уровня (802.11n/ac) уже стало стандартом наличие 3-4 антенн. При этом, количество пространственных потоков часто меньше количества антенн. На самом деле, много ли клиентов поддерживающих, например, 3 потока? Конечно, не много. Если это смартфон, то чаще поддерживается только один пространственный поток. Это дает точке доступа использовать различные техники для оптимизации приема и передачи сигналов, используя свободные антенны.

Оптимальное весовое сложение (MRC)


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

MRC позволяет улучшить значение SNR для входящего сигнала (от клиента к точке доступа). Если на точке доступа есть дополнительный свободный приемник(и), она складывает полученный на этом приемнике сигнал с остальными. Так как на приемнике уже есть информация о текущем состоянии канала передачи (для каждой из передающих антенн), он может вычислить сигналы (на каждой из приемных антенн), провести их выравнивание и оптимальное сложение, получив лучшее соотношение сигнал-шум. Сравнение результатов для одного и нескольких потоков с дополнительными антеннами и без показывает, что MRC в некоторых случаях позволяет существенно увеличить значение SNR, а значит увеличить и скорость передачи, дальность действия ТД. M RC работает только на точке доступа для улучшения входящего сигнала от клиента. Технология может использоваться совместно с другими – CSD, SDM, STBC.

Разнесенная передача (CSD/SE)


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

Технология Cyclic Shift Diversity (CSD) позволяет передать копии одного сигнала с дополнительных свободных антенн. Делается это поочередно c небольшим интервалом (200 нс). Если передать копии одного сигнала одновременно с нескольких антенн (мощность делится), получить выигрыш на приеме не удастся. Если же передать сигнал независимо (на максимальной мощности) с небольшим интервалом с каждой из антенн, можно получить разнесение сигнала на приеме, а значить улучшить сигнал. Приемник в свою очередь по определенному критерию выбирает лучший сигнал. Метод разнесенной передачи довольно старый и не очень удобен для распознавания на приемнике (требует вычислительной мощности, плохо масштабируется). Однако, он поддерживается на точках доступа и работает с клиентами предыдущих поколений – 802.11a/g. В современных стандартах (802.11n и далее) используется механизм STBC либо адаптивная передача (Beamforming).

Пространственно-временное блочное кодирование (STBC)


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

STBC позволяет передавать разные сигналы одновременно с нескольких антенн за несколько тактовых интервалов. Для передачи используется схема Аламоути. Для простейшего случая 2х1, эта схема позволяет за два интервала времени передать два сигнала два раза. На двух интервалах с разных антенн передается один из сигналов и комплексное сопряжение другого сигнала. Таким образом, мы получаем разнесение сигналов по времени и пространству (два сигнала проходят разными путями), увеличивая результирующий сигнал на приеме. С точки зрения приема, метод STBC является достаточно удобным, т.к. не требует большой вычислительной мощности. Как можно догадаться, STBC не работает одновременно с CSD. В противовес MRC, который мы рассмотрели ранее, STBC позволяет нам улучшить качество сигнала от точки доступа к клиенту. Теоретически, поддерживается работа в режимах более высоких порядков или для нескольких потоков (например, в режиме 2х1 для двух потоков с четырьмя передающими антеннами). S TBC может использоваться одновременно с MIMO SDM.

Влияние на производительность

Итак, мы рассмотрели разные методы разнесенной (множественной) передачи/приема на точках доступа. В чем же преимущество их использования, какой реальный прирост они дают? Посмотрим графики*. На первом графике для MCS7 (один поток) мы видим, что SE (CSD) не дает существенных улучшений по сравнению с режимом SISO (1×1). S TBC же ведет себя гораздо лучше: для коэффициента ошибок 1% (PER – Packet Error Rate) он на ~4 dB лучше SE. M RC** дает наибольший прирост: почти 10 dB по сравнению с режимом 1х1! Однако, на более низких скоростях результаты менее захватывающие. Для MCS0 (второй график) показатели SNR для STBC и SE (CSD) вообще сравнимы.

*взято из книги Eldad Perahia, Robert Stacey. Next Generation Wireless LANs — 802.11n and 802.11ac

**Почему MRC лучше

На самом деле, при сравнении систем 2:1 и 1:2 для STBC и MRC соответственно при одинаковой мощности с двух сторон STBC априори будет давать меньший результат. Связано это с тем, что при передаче сигнала с двух антенн мощность делиться на два (-3 dB). При приеме же точка доступа получает сигнал, отправленный на полной мощности. То есть разница между STBC и MRC в режиме 2 приемника или передатчика составляет не менее 3 dB.


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

Адаптивная передача (802.11ac Explicit Beamforming)


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

Все методы, которые мы рассматривали до этого основывались на обработке сигнала на приемной стороне. То есть при передаче информации именно приемник составлял матрицу канала связи для входящего сигнала с каждого из передатчиков. Передающая же сторона не подстраивала сигнал на антеннах между собой, то есть отправляла сигнал “вслепую”. При адаптивной передаче основной акцент делается на определении состояния канала на передатчике, чтобы отправить сигнал с оптимальными фазово-амплитудными характеристиками. Другими словами, отправить сигнал с нескольких антенн таким образом, чтобы на приёмной стороне получить наилучшее качество. Сделать это можно разными способами (без ответа от получателя, калибровка с получателем). В стандарте 802.11ac был реализован подход с получением калибровочной информации от приемника. То есть приемник сообщает, как он слышит сигнал с каждой антенны точки доступа. После этого, на основе предположения что канал в обе стороны симметричен, формируется матрица передачи с коэффициентами для конкретного приемника. Кроме того, использование адаптивной передачи позволяет распределять мощность между различными потоками (например, увеличить мощность для потоков лучшим SNR) На графике видно, что в сравнении с методами разнесенной передачи рассмотренными ранее режим адаптивной передачи позволяет получить наибольший прирост в скорости при передаче информации клиенту.


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

Мы рассмотрели различные методы множественной передачи сигнала в системах MIMO (Wi-Fi) – мультиплексирование, разнесение сигнала на приеме и передаче, адаптивную передачу, а также показали какой прирост они могут дать. В реальных условиях будет наблюдаться более комплексная картина. Добавляются дополнительные факторы, влияющие на работу беспроводной сети (расстояние до клиента, количество клиентов, нагрузка на канал, поддерживаемые клиентом методы передачи и др.). Точка доступа на основе встроенных алгоритмов решает какие методы передачи использовать в тот или иной момент времени.

Список использованной литературы

В простейшем случае (для релеевских замираний) моделирование канала связи MIMO может состоять в заполнении канальной матрицы случайными коэффициентами с нулевым средним и единичной дисперсией.

Зачем вообще что-то менять, если и так всё хорошо?

«Но мы же нормально жили с существующими технологиями Wi-Fi», — скажете вы. Что ж, вот вам парочка интересных фактов. Большинство пользователей обновляют домашний роутер раз в 3–5 лет. Для мира технологий это эквивалентно 30–50 годам! Например, пять лет назад почти никто даже не думал об Интернете вещей или «умном доме».

Объёмы мобильного трафика непрерывно растут: например, в США каждый год среднестатистическая семья добавляет к домашней сети Wi-Fi три подключенных устройства, а к 2022 году, с наступлением эры Интернета вещей, таких устройств в каждом домовладении будет до 50!


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

Получается, что и число подключенных устройств, и количество данных, которые мы потребляем, растёт ускоряющимися темпами. Если вы купили роутер пять лет назад, то скорее всего он с трудом справляется даже с существующими нагрузками. Чтобы идти в ногу со временем — не только сегодня, но и в ближайшие несколько лет, лучше перейти на роутер с технологией MU-MIMO. Такой роутер обеспечит передачу данных между множеством устройств одновременно без потери скорости и качества подключения. Даже наоборот, скорость обслуживания подключённых устройств повысится. Беспроводные модули в ваших многочисленных домашних устройствах не будет «топтаться», переминаясь с ноги на ногу, в ожидании своей очереди, он не будет тратить энергию на отправку роутеру запросов на подключение, а значит, сможет работать дольше от одной зарядки.

Example of an antenna for LTE with 2 port antenna diversity

Knowing the quality of the signal channel is also critical. A channel emulator can simulate how a device performs at the cell edge, can add noise or can simulate what the channel looks like at speed. To fully qualify the performance of a receiver, a calibrated transmitter, such as a vector signal generator (VSG), and channel emulator can be used to test the receiver under a variety of different conditions. Conversely, the transmitter’s performance under a number of different conditions can be verified using a channel emulator and a calibrated receiver, such as a vector signal analyzer (VSA).

Наличие обратной связи

В обозримом, а точнее даже скором будущем Интернет вещей (IoT) станет обыденностью. Технология SU-MIMO не позволит эффективно и быстро подключать множество устройств, которые постоянно обмениваются данными с Сетью.


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

А роутер с MU-MIMO сможет обеспечить достаточную пропускную способность для большого количества подключенных устройств: смартфонов, медиаплееров, смарт-телевизоров, планшетов, игровых ПК и другой умной техники — вплоть до стиральных машин, холодильников, мультиварок. Даже если вся техника и все члены семьи будут одновременно пользоваться Wi-Fi, качество соединения не пострадает.

Математическая модель MIMO

Рассмотрим MIMO-систему с N передающими и M приемными антеннами (антенными элементами). Свойства MIMO-канала, соединяющего n-й передающий элемент с m-м приёмным элементом, описываются комплексными канальными коэффициентами , образующими канальную матрицу размера N × M. Их значения случайно изменяются со временем из-за наличия многолучевого распространения сигнала. Если

— вектор передаваемых сигналов;
 — вектор собственных шумов приёмных элементов антенны;
 — вектор принятого сообщения,

то сигнал на приёмной стороне записывается следующим образом:

Матрица считается нормированной.

MIMO can be sub-divided into three main categories: precoding, spatial multiplexing (SM), and diversity coding.

Precoding is multi-stream beamforming, in the narrowest definition. In more general terms, it is considered to be all spatial processing that occurs at the transmitter. In (single-stream) beamforming, the same signal is emitted from each of the transmit antennas with appropriate phase and gain weighting such that the signal power is maximized at the receiver input. The benefits of beamforming are to increase the received signal gain – by making signals emitted from different antennas add up constructively – and to reduce the multipath fading effect. In line-of-sight propagation, beamforming results in a well-defined directional pattern. However, conventional beams are not a good analogy in cellular networks, which are mainly characterized by multipath propagation. When the receiver has multiple antennas, the transmit beamforming cannot simultaneously maximize the signal level at all of the receive antennas, and precoding with multiple streams is often beneficial. Precoding requires knowledge of channel state information (CSI) at the transmitter and the receiver.

Diversity coding techniques are used when there is no channel knowledge at the transmitter. In diversity methods, a single stream (unlike multiple streams in spatial multiplexing) is transmitted, but the signal is coded using techniques called space-time coding. The signal is emitted from each of the transmit antennas with full or near orthogonal coding. Diversity coding exploits the independent fading in the multiple antenna links to enhance signal diversity. Because there is no channel knowledge, there is no beamforming or array gain from diversity coding.
Diversity coding can be combined with spatial multiplexing when some channel knowledge is available at the receiver.

  • Бакулин М. Г., Крейнделин В. Б., Шлома А. М. Новые технологии в системах мобильной радиосвязи. — М:Инсвязьиздат, 2005.
  • Маврычев Е. А. Пространственная обработка сигналов в системах связи с антенными решётками. Дис. канд. техн. наук: — М., 2003.

Standards and commercialization

Роутер с поддержкой MU-MIMO визуально отличается бОльшим количеством передающих и принимающих антенн, из-за чего похож на ёжика. Многочисленные антенны как раз и нужны для одновременного обслуживания нескольких устройств без потери скорости.


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

Обработка сигналов на приёмной стороне MIMO-системы

Среди алгоритмов обработки сигналов на приёмной стороне можно выделить:

Также существует разделение на ортогональные и неортогональные методы кодирования/декодирования.

Основной задачей любого метода является поиск решений из числа всех возможных по наименьшему евклидовому расстоянию между переданным символом и одним из возможных решений.

Метод МСКО предполагает декодирование принятого сигнала по формуле

Метод форсирования нуля предполагает декодирование по формуле

Для снижения вычислительной сложности этой задачи декодирование разделяется на 2 этапа:

Методы пространственно-временного кодирования

Упрощённо, принцип блочного кодирования заключается в разбиении потока данных на блоки и ретрансляции блока в различные временны́е интервалы. Таким образом соблюдается принцип неоднократной посылки данных и улучшается помехоустойчивость схемы MIMO как таковой. Однако энергетического выигрыша кодирования по помехоустойчивости (ЭВК) блочные коды не дают.
Наиболее простой и распространенной схемой является так называемая схема Аламоути, согласно которой данные в кодере распределяются в соответствии с матрицей

Таким образом, первая антенна передаёт подряд символы () и (), вторая — () и (). Иногда, в частности в информационных технологиях и телекоммуникациях, применяют транспонированную матрицу H. Кодовая скорость здесь равна 1, то есть данная схема не даёт выигрыша по скорости передачи данных, но может использоваться для предотвращения негативных воздействий замираний (здесь предполагается, что обе антенны не могут одновременно находиться в «плохих» с точки зрения помех положениях).

Декодирование происходит по схеме максимального правдоподобия.

Решётчатое пространственно-временное кодирование

Пропускная способность системы в целом и её частота битовых ошибок (BER) также в немалой степени определяются выбранными алгоритмами декодирования. Все основные алгоритмы декодирования строятся на следующих возможных принципах:

Кодер STTC представляет собой совокупность модулятора M-PSK либо M-QAM и решётчатого кодера с заданным полиномом (в частности, кодера Витерби).

Неортогональные методы пространственно-временного кодирования

Технология BLAST (Bell Labs Space-Time Transformation) предназначена для:

Существует два вида алгоритма BLAST:

Алгоритм BLAST с диагональным распределением временных слотов (D-BLAST)

Достоинством этого метода является возможность «разброса» данных одного канала не только по пространственным и частотным каналам, но и по временным промежуткам. Подобный алгоритм используется в системах Wi-Max.

Недостатками этого алгоритма являются:

Алгоритм BLAST с вертикальным распределением слотов (V-BLAST)

Достоинствами данного алгоритма являются:

Варианты пространственного мультиплексирования

Пространственное разделение подканалов в системах MIMO может быть реализовано следующими способами:

За что вы полюбите MU-MIMO

Роутеры, в которых реализована эта технология, стали появляться не так давно и на рынке их пока немного. Но когда придет время обновляться, предпочтительно выбирать модель с поддержкой MU-MIMO — такой роутер не устареет морально в ближайшие годы.

Наиболее распространённым методом синхронизации в OFDM-MIMO является метод пилотных сигналов (поднесущих).

Модель канала MIMO

Применение технологии MIMO

Технология MIMO нашла практическое применение в беспроводных локальных сетях стандарта IEEE 802.11n, IEEE 802.11ac, а также в беспроводных сетях мобильной связи WiMAX и LTE.

Given the nature of MIMO, it is not limited to wireless communication. It can be used for wire line communication as well. For example, a new type of DSL technology (gigabit DSL) has been proposed based on binder MIMO channels.

Sampling theory in MIMO systems

MIMO channel model

where   and   are the receive and transmit vectors, respectively, and   and   are the channel matrix and the noise vector, respectively.

where   are the diagonal elements of  ,   is zero if its argument is negative, and   is selected such that  

The spatial correlation of the channel has a strong impact on the ergodic channel capacity with statistical information.

If the transmitter has no channel state information it can select the signal covariance   to maximize channel capacity under worst-case statistics, which means   and accordingly

Depending on the statistical properties of the channel, the ergodic capacity is no greater than   times larger than that of a SISO system.

Spatial multiplexing techniques make the receivers very complex, and therefore they are typically combined with orthogonal frequency-division multiplexing (OFDM) or with orthogonal frequency-division multiple access (OFDMA) modulation, where the problems created by a multi-path channel are handled efficiently. The IEEE 802.16e standard incorporates MIMO-OFDMA. The IEEE 802.11n standard, released in October 2009, recommends MIMO-OFDM.

MIMO wireless communications architectures and processing techniques can be applied to sensing problems. This is studied in a sub-discipline called MIMO radar.

Чем они различаются?

MIMO расшифровывается как multiple input, multiple output — «множественный ввод, множественный вывод». Это метод пространственного кодирования сигнала, использующий систему с множеством каналов передачи и приема данных.

В зависимости от количества пользователей, в адрес которых осуществляется одновременная передача данных, существует два типа MIMO:


ПО ТЕХНОЛОГИИ И МЕТОДАМ ОПТИМИЗАЦИИ ПРИЕМА

Сейчас в сетях Wi-Fi традиционно используется технология, при которой подключение к точке доступа происходит последовательно, и в определенный отрезок времени все потоки данных адресованы одному пользователю: пока его устройство отправляет или получает данные, остальные скромно ждут своей очереди. Это похоже на получение обеда в столовой: стоя в очереди, вы видите повара на раздаче, но впереди ещё два десятка коллег, и ваша порция достанется вам только после того, как обслужат стоящих перед вами людей. С Wi-Fi в случае SU-MIMO история аналогичная: из-за задержки на ожидание очереди скорость обмена данными снижается, и, даже находясь дома в зоне стабильного приёма, телефон или планшет не всегда подключается к сети мгновенно или долго загружает страницы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *