Для термина «большие числа (значения)» см. также другие значения.
Несмотря на то что гугология — современный термин, история изучения человеком больших чисел уходит в глубокую древность.
I век н. э. — В буддистском священном тексте Аватамсака-сутра было упомянуто число
1928 год — Вильгельм Аккерман опубликовал свою функцию.
2006 год — Х. Фридман дал определение быстрорастущим функциям SCG(n) и SSCG(n).
2007 год — Д. Бауэрс определил ещё более мощную нотацию BEAF (данная нотация хорошо определена до , числа, превосходящие этот уровень, вызывают противоречивость оценок).
Числа, приведённые ниже, находятся уже за пределами применения нотаций Кнута и Конвея.
Применение больших чисел в других областях науки
Изменение со временем величины наибольшего известного простого числа с момента создания первой ЭВМ; по вертикали отложена разрядность числа в логарифмическом масштабе; красная линия — экспонента : y = exp (0,187394 t − 360,527), где t — время в годах
Согласно теореме Евклида, количество простых чисел бесконечно. Следовательно, количество простых чисел, превышающих наибольшее известное на данный момент, тоже бесконечно. Многочисленные энтузиасты, в том числе некоторые учёные-математики, занимаются поиском рекордных по величине простых чисел. За их нахождение организацией Electronic Frontier Foundation было предложено несколько наград в зависимости от величины числа. Так, в 2009 году была вручена премия размером в 100 000 долларов США, назначенная сообществом Electronic Frontier Foundation за нахождение простого числа, десятичная запись которого содержит не менее 10 миллионов цифр.
В таблице ниже представлены наибольшие известные простые числа в порядке нахождения. Числа Мерсенна с показателем n обозначены Mn= 2n − 1.
Эта страница в последний раз была отредактирована 8 сентября 2023 в 18:39.
Как только страница обновилась в Википедии она обновляется в Вики 2.
Обычно почти сразу, изредка в течении часа.
Считается, что концепция чисел впервые возникла, когда доисторические люди начали использовать свои пальцы для подсчета чего-либо. С тех пор человечество прошло долгий путь. Теперь мы используем калькуляторы и компьютеры для подсчета самых больших чисел. И даже появились названия для чисел, которые настолько велики, что их с трудом можно представить.
Бесконечность счетных чисел
Казалось бы, ответ на вопрос о том, каково самое большое число в математике – очень прост. Бесконечность, верно? Но это не совсем правильно. Ведь бесконечность – вовсе не число, а концепция. Идея.
Бесконечность (infinitum) – это понятие, которое в переводе с латинского означает «без границ». Определение бесконечности в математике гласит, что независимо от того, насколько велико число, вы всегда можете добавить к нему 1, и оно станет больше.
Поэтому, строго говоря, не существует такого понятия, как самое большое число в мире. Можно лишь назвать наибольшее число, которому дали конкретное название.
Вот некоторые наиболее известные названия больших чисел:
Как называется самое большое простое число
Простое число – то, которое делится только на себя и на единицу. В конце 2018 года американец Патрик Лярош представил научному миру самое большое простое число.
Какое самое большое число в мире
В 1980 году в Книгу рекордов Гиннеса вошло число Грэма (оно же G64 или G), названное в честь американского математика Рональда Грэма. Оно является наибольшим числом, которое когда-либо использовалось в важном математическом доказательстве. Речь идет про теорию Франка Рамсея.
Кратко об этой теории: представим себе N-мерный куб, его вершины в случайном порядке соединены красными или синими отрезками-линиями. А наша задача – понять, до какого значения N возможно (если по-разному закрашивать ребра куба), избежать ситуации, при которой одна плоскость в кубе будет окрашена одним цветом. То есть у нас не должен получиться одноцветный «конвертик».
Число Грэма получило всемирное признание в 1977 году, когда известный популяризатор науки Мартин Гарднер написал об этом в Scientific American.
И хотя с тех пор в математической науке были и другие кандидаты на титул самого большого числа, «детище» Грэма является самым распиаренным и общеизвестным. И если вы слышали про «гугольное семейство»:
то знайте, что этими числами в математике лишь «разминаются», а число Грэма в немыслимое количество раз больше, чем они. И даже больше, чем число Скьюза, находящееся между 1019 и 1,3971672·10316 и приблизительно равное e727,951336108.
Любопытно, что придумав гугол американский математик Эдвард Казнер хотел показать студентам разницу между невероятно большим числом и бесконечностью. Тогда число Грэма может просто «взорвать мозг».
Возможно ли представить и записать число за гранью понимания
А вот цифры, с которых начинается G64 неизвестны, и вряд ли когда-либо будут.
Давайте сравним трех монстров: гугол, гуголплекс и число Грэма.
Теперь представьте, что в какой-то момент вы берете одну песчинку, чтобы рассмотреть ее под мощным микроскопом. И видите, что на самом деле это не единственное зерно, а 10 миллиардов микроскопических зерен, а все вместе они размером с песчинку. Если бы это было так для каждой отдельной песчинки в этой гипотетической вселенной, то общее количество этих микроскопических зерен было бы гуголом.
Как записать G64 с помощью метода Кнута
В 1976 году американский ученый Дональд Кнут предложил понятие сверхстепеней или нотацию Кнута. Это метод, позволяющий при помощи стрелочек, направленных вверх, записывать очень большие числа. Возведение в степень обозначается одной стрелкой вверх: ↑.
Важной особенностью стрелок вверх является то, что они растут очень быстро. Экспонентация растет гораздо быстрее, чем умножение. 2 × 10 – это всего лишь 20, но 2↑10 = 1024. Таким же образом, каждый новый уровень стрелок растет намного быстрее, чем предыдущий уровень.
Если мысленно представить себе степенную башню из троек 3↑↑↑4 то получится конструкция, размером от Земли до Марса. А ведь мы еще даже не дошли до «нижней ступеньки», ведущей нас к числу Грэма.
Мы можем описать число Грэма огромным набором этих стрелок вверх.
Проще всего думать об этом как об итерационном процессе. Мы начинаем снизу с g 1 = 3 ↑↑↑↑ 3, а затем создаем вторую строку (назовем ее g 2) с g 1 стрелками между тройками.
Тогда g 3 – это две тройки, разделенные g 2 стрелками вверх и так далее, пока g 64 с g 63 стрелками между тройками не будет числом Грэма.
Если выбрать продолжительность жизни, равную числу Грэма вместо бессмертия, то результат будет практически одинаков. Даже если предположить, что условия во Вселенной, в Солнечной системе и на Земле вечно останутся неизменными, человеческий мозг никак не мог бы выдержать столь длинный промежуток времени без пагубных изменений.
Дети часто задают вопрос: «Какое число самое большое?». Этот вопрос — важный шаг в процессе перехода в мир абстрактных понятий. Ответ, конечно, прост: числа, скорее всего, бесконечны, но есть определенный порог, за которым числа становятся настолько большими, что в них нет смысла, кроме того, что технически они могут существовать. Давайте возьмем десятку гигантских чисел, известных нам, но ограничимся крайне важными понятиями в мире чисел.
Десять в восьмидесятой степени — 1 с 80 нулями — это довольно массивное число, обозначающее примерное число элементарных частиц в известной вселенной, и, говоря элементарные частицы, мы не имеем в виду микроскопические частицы — мы говорим о куда меньших вещах вроде кварков и лептонов — о субатомных частицах. Это число в США и современной Великобритании называют «сто квинквавигинтиллионов». Вроде бы, несложно понять, что это число обозначает количество мельчайших частиц в нашей Вселенной, однако это самое маленькое и простое число в нашем списке.
Слово гугол, несколько измененное, стало часто используемым в современности, благодаря популярной поисковой системе. У этого числа есть интересная история — достаточно просто погуглить. Термин был придуман Милтоном Сироттой в 1938 году, когда ему было 9 лет. И хотя это относительно абстрактное число, и его существование объясняется необходимостью технического существования, ему все-таки нашли применение.
Алексис Лемер поставил мировой рекорд, рассчитав корень тринадцати из стозначного числа. Гугол — это стозначное число, число с сотней нулей. Также предполагается, что от одного до полутора гугол лет с момента Большого Взрыва взорвется самая массивная черная дыра. И тогда Вселенная вступит в так называемую «темную эпоху» — конец той научной вселенной, какой мы ее знаем.
8,5 х 10^185
Длина Планка — это очень маленькая длина, примерно 1,616199 x 10-35, или 0,00000000000000000000000000000616199 метра. В дюймовом кубе этих длин примерно с гугол. Длина и объем Планка играют важную роль в отраслях квантовой физике — например, теории струн — поскольку позволяют производить вычисления на самых мельчайших масштабах. Во вселенной примерно 8,5 x 10^185 объемов Планка. Это достаточно большое число, и ему все же нет практического применения, но оно остается достаточно простым в нашем списке.
2^43,112,609 – 1
Третье по величине число в этом списке — это число всех планковых объемов во Вселенной, и в нем 185 цифр. А в этом числе почти 13 миллионов цифр. Чем это число важно? Это самое большое из известных сегодня простых чисел. Его обнаружили в августе 2008 года в ходе Great Internet Messene Prime Search (GIMPS).
Вы наверняка слышали это слово, хотя бы в фильме «Назад в будущее», когда доктор Эммет Браун бормотал «она одна на миллион, одна на миллиард, одна на гуголплекс». Что такое гуголплекс? Помните длину гугола? Единица и сто нулей. А гуголплекс — это десять в степени гугол. Это больше, чем число всех частиц в известной нам части вселенной.
Вы можете отметить, что можно возводить десять в степень гуголплекс и будет еще больше, и так далее, и окажетесь совершенно правы.
Время возвращения Пуанкаре
Это очень сложная вещь, но основная концепция относительно проста: при наличии достаточного времени, все возможно. Теорема Пуанкаре о возвращении предполагает количество времени, которого было бы достаточно для того, чтобы однажды вся Вселенная вернулась в свое нынешнее состояние, вызванное случайными квантовыми флуктуациями. Короче, «история повторится». Предполагается, что это займет 10^10^10^10^10^1,1 лет.
В 80-х годах это число попало в Книгу рекордов Гиннесса как самое массивное конечное число, когда-либо использованное в математических доказательствах. Оно было выведено Роном Грэмом как верхний предел для проблем теории Рамси о многоцветных гиперкубах. Число настолько большое, что для его записи используется стрелочная нотация Кнута (метод записи больших чисел) и собственное уравнение Грэма. Метод Кнута и принцип работы стрелок сложно объяснить, но вы можете представить себе это так. 3↑3 превращается в 3^3 или 27, 3↑↑3 превращается в 3^3^3 или 7,625,597,484,987. Вы можете добавить еще одну стрелку к 3↑↑↑3 и выйти на 7,5 триллионов уровней. Само по себе это число значительно больше, чем время возвращения Пуанкаре, поскольку вы можете добавить бесконечное число стрелок, и каждая стрелка будет невероятно увеличивать число.
Число Грэма выглядит так: G=f64
, где f(n)=3↑^n3. Лучший способ его представить — разложить по полочкам. Первый слой — это 3↑↑↑↑3, что уже невероятно много. Следующий слой — это множество стрелок между тройками. Возьмите эти стрелки и поместите между следующими тройками. Это умножается в 64 раза. Даже сам Грэм не знает первое число, но последние десять вот: 2464195387. Вся наблюдаемая вселенная слишком мала, чтобы вместить в себя обыкновенную десятичную запись числа Грэма.
Это число известно всем и каждому, оно часто используется для преувеличений — как какой-нибудь «многоллион». Однако это число намного сложнее, чем большинство может представить, и если вы могли представить числа, идущие до этого пункта, именно это число очень странное и противоречивое. Согласно правилам бесконечности, есть бесконечное число нечетных и четных чисел в бесконечности, однако только половина от всех чисел может быть четной. Бесконечность плюс один равна бесконечности, бесконечность минус один равна бесконечности, бесконечность плюс бесконечность равна бесконечности, деленная пополам — тоже бесконечность, бесконечность минус бесконечность — никто не знает, бесконечность, деленная на бесконечность, будет, скорее всего, 1.
Ученые полагают, что в известной вселенной около 10^80 субатомных частиц, но это только известная вселенная. Некоторые предполагают, что вселенная бесконечна. Если это так, то математически достоверно, что есть другая Земля где-то там, где каждый атом складывается таким же образом, как и мы, и наша Земля. Шанс того, что копия Земли существует, невероятно мал, но в бесконечной вселенной это не только может произойти, но и бесконечно много раз.
В бесконечность верят не все. Израильский профессор математики Дорон Зильбергер утверждает, что по его мнению, числа не будут продолжаться вечно, и найдется настолько большое число, что когда вы добавите к нему единицу, вы придете к нулю. И хотя это число едва ли когда будет обнаружено и едва ли кто сможет его вообразить, бесконечность является важной частью математической философии.
Простите, но этот пункт здесь очень важен.
В европейской традиции исторически сложились два варианта системы наименования больших чисел.
Термин «миллион» итальянского происхождения и встречается уже в первой печатной арифметике (анонимной), вышедшей в итальянском городе Тревизо в 1478 году, и ещё ранее в нематематической книге путешественника Марко Поло (умер в 1324 году), а в форме «миллио» еще раньше — в рукописи 1250 года.
В рукописи французского математика XV века Никола Шюке впервые появляются термины «биллион» — 1012, «триллион» — 1018 и дальнейшие; в печатном руководстве биллион в значении 1012 появляется в 1602 году.
В XVII веке во Франции начали употреблять короткую шкалу: «биллион» — 109, «триллион» — 1012 и т. д.
Слово «миллиард», имевшее вначале значение 1012, получило значение 109 (тысячи миллионов) в «Арифметике» Траншана (1558) и употреблялось во Франции в XIX веке наравне со словом «биллион». В Германии это слово вошло в употребление лишь после получения от Франции 5 миллиардов контрибуции после франко-прусской войны 1871 года.
Для чтения чисел с большим количеством цифр анонимная рукопись 1200 года впервые рекомендует разбить цифры на группы по 3 или отмечать группы точками вверху или дугами; это же затем рекомендует Леонардо Пизанский (1228). К этой системе приходят и последующие авторы, однако они не предлагали названий. Введённые Шюке наименования больших чисел, но с группировкой цифр по 6 относятся к системе наименования чисел с длинной шкалой.
Использование систем наименования чисел в мире:
В России первоначально была введена система наименования чисел с длинной шкалой, и, по-видимому, в печатном виде впервые в 1703 году в «Арифметике» Л. Ф. Магницкого. Однако в конце XVIII века, в царствование императора Павла I, вслед за Францией произошёл переход на короткую шкалу. Так, в опубликованном в 1798 году переводе части первой — «Арифметика» — «Курса математики» Этьенна Безу введена система наименования чисел с короткой шкалой, при том, что в опубликованной в 1791 году книге «Арифметика или числовник» Н. Г. Курганова (1725 или 1726—1796) используется длинная шкала. Длинная шкала встречается и в некоторых русских учебниках XIX века, однако к XX веку фактически закрепилась короткая шкала.
В США короткая шкала используется с XIX века; Великобритания перешла на неё в 1974 году.
Система наименования чисел с короткой шкалой используется в России и других странах бывшего СССР, англоязычном и арабоязычном мире, Бразилии, Болгарии, Греции, Румынии и Турции. При этом вместо слова «биллион» обычно используется слово «миллиард», за исключением англоязычного мира и Бразилии.
Количество нулей числа с короткой шкалой определяется по формуле 3·(n+1), где n1 — степень из названия числа, добавляемая к первой степени тысячи.
Таблица от значения к названию
Эта страница в последний раз была отредактирована 27 сентября 2023 в 19:23.
Для термина «большие числа (значения)» см. также другие значения.
I век н. э. — В буддистском священном тексте Аватамсака-сутра было упомянуто число
1928 год — Вильгельм Аккерман опубликовал свою функцию.
2006 год — Х. Фридман дал определение быстрорастущим функциям SCG(n) и SSCG(n).
2007 год — Д. Бауэрс определил ещё более мощную нотацию BEAF (данная нотация хорошо определена до , числа, превосходящие этот уровень, вызывают противоречивость оценок).
Эта страница в последний раз была отредактирована 16 июля 2023 в 18:24.