задание 5 принципы работы квантового компьютера

Проблемы квантовых компьютеров

При проектировании и эксплуатации квантовых компьютеров перед учеными и инженерами возникает огромное количество проблем, которые на сегодняшний день решаются с переменным успехом. Согласно исследованию (и еще вот тут) можно выделить следующий ряд проблем:

Давайте организуем все основные проблемы в три большие группы и рассмотрим поподробнее каждую из них:

D-Wave


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Если коротко (взято из вики):

Компьютеры D-Wave работают на принципе квантовой релаксации (квантовый отжиг), могут решать крайне ограниченный подкласс задач оптимизации, и не подходят для реализации традиционных квантовых алгоритмов и квантовых вентилей.

Более подробно можно почитать, например, тут, тут (осторожно, может не открываться из России), или у Scott Aaronson в статье из его блога. Кстати, очень рекомендую почитать вообще его блог, там много хорошего материала

Вообще с самого начала анонсов у научного сообщества возникали вопросы к компьютерам D-Wave. Например, в 2014 году IBM поставила под сомнение факт, что D-Wave использует квантовые эффекты. Дело дошло до того, что в 2015 году Google вместе с NASA купила один из таких квантовых компьютеров и после исследований подтвердила, что таки да, компьютер работает и вычисляет задачу быстрее, чем обычный. Еще про заявление Google можно почитать тут и, например, тут.

Главное, что компьютеры D-Wave, с их сотнями и тысячами кубитов нельзя использовать для вычисления и запуска квантовых алгоритмов. На них нельзя запустить алгоритм Шора, например. Все, что они могут — это используя определенные квантовые механизмы решать определенную задачу оптимизации. Можно считать, что D-Wave это такой квантовый ASIC для конкретной задачи.

Алгоритм Гровера

Алгоритм Гровера — квантовый алгоритм решения задачи перебора, то есть нахождения решения уравнения F(X) = 1, где F — есть булева функция от n переменных. Был предложен американским математиком Ловом Гровером в 1996 году.

Алгоритм Гровера может быть использован для нахождения медианы и среднего арифметического числового ряда. Кроме того, он может применяться для решения NP-полных задач путем исчерпывающего поиска среди множества возможных решений. Это может повлечь значительный прирост скорости по сравнению с классическими алгоритмами, хотя и не предоставляя «полиномиального решения» в общем виде.(С)

Подробнее можно почитать вот тут, или тут. Еще вот тут есть хорошее объяснение алгоритма на примере ящиков и мяча, но, к сожалению, по независящим ни от кого причинам, данный сайт у меня из России не открывается. Если у вас этот сайт тоже заблокирован, то вот краткая выжимка:

Алгоритм Гровера. Представьте, что у вас имеется N штук пронумерованных закрытых коробок. Они все пустые кроме одной, в которой находится мячик. Ваша задача: узнать номер коробки, в которой находится мячик (этот неизвестный номер часто обозначают буквой w).

Как решать эту задачу? Самым тупым способом, по очереди открывать коробки, и рано или поздно вы наткнетесь на коробку с мячиком. А сколько в среднем коробок нужно проверить до того, как будет обнаружена коробка с мячиком? В среднем нужно открыть примерно половину коробок N/2. Главное здесь то, что если мы увеличим число коробок в 100 раз, то в те же 100 раз увеличится и среднее число коробок, которые нужно открыть до того, как будет найдена коробка с мячиком.

Теперь сделаем ещё одно уточнение. Пусть мы не сами открываем коробки руками и проверяем наличие мячика в каждой, а имеется некий посредник, назовем его Оракул (Oracle). Мы говорим Оракулу — «проверь коробку номер 732», и Оракул честно проверяет и отвечает «в коробке номер 732 мячика нет». Теперь вместо слов о том, сколько коробок нам нужно в среднем открыть, мы говорим «сколько раз в среднем мы должны обратиться к Оракулу для того, чтобы найти номер коробки с мячиком»

Оказывается, что если перевести эту задачу с коробками, мячиком и Оракулом на квантовый язык, то выходит замечательный результат: для поиска номера коробки с мячиком среди N коробок нам нужно потревожить Оракула всего примерно SQRT(N) раз!

То есть сложность задачи перебора используя алгоритм Гровера снижается в квадратный корень раз.

Принцип работы квантового компьютера

Квантовые компьютеры часто понимают неправильно из-за того, что в их названии есть слово «компьютер». Когда люди слышат слово «компьютер», они думают о ноутбуках или телефонах, но дело в том, что эти устройства и даже самые большие суперкомпьютеры в мире работают по одной и той же фундаментальной схеме. Однако, квантовые компьютеры имеют фундаментальные отличия и их нельзя называть компьютерами в привычном понимании этого слова.


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Квантовые вычислительные системы — устройства, использующие явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Такие устройства оперируют кубитами (квантовыми битами), которые могут одновременно принимать значение и логического ноля, и логической единицы. Поэтому с ростом количества использующихся кубитов число обрабатываемых одновременно значений увеличивается в геометрической прогрессии.

В квантовом компьютере основным элементом является кубит – квантовый бит. В отличие от обычного бита он находится в состоянии квантовой суперпозиции, то есть имеет значение и 0, и 1, и любые их сочетания в любой момент времени. Если в системе находится несколько кубитов, то изменение одного также влечет за собой изменение всех остальных кубитов.


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Это позволяет одновременно просчитывать все возможные варианты. Обычный процессор с его бинарными вычислениями, фактически просчитывает варианты последовательно. Сначала один сценарий, потом другой, потом третий и т.д. Чтобы ускорить, начали применять многопоточность, запуская вычисления параллельно, предвыборку, чтобы предугадывать возможные варианты ветвления и просчитывать их заранее. В квантовом компьютере это все делается параллельно.

https://youtube.com/watch?v=Uilas2vGsCg%3Fstart%3D8

Прогресс развития квантовых вычислений за последние 20 лет:


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Пример работы квантовых вычислений

Для того, чтобы понять потенциал квантовых вычислений, давайте рассмотрим простую задачку: пройти лабиринт.


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Единственный способ решения такой задачи на классическом компьютере — перебор всех возможных вариантов, череда успехов и неудач. Однако квантовый компьютер, используя всю мощь квантовой физики, проверяет все варианты одновременно и дает правильное решение намного быстрее.


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Казалось бы, можно немного подождать и классический компьютер решит задачу, зачем строить сложную квантовую машину? Все бы ничего, но только человечество постоянно сталкивается с задачами, которые займут тысячи, миллионы, миллиарды лет вычислений на самых мощных суперкомпьютерах мира. Время — непозволительная роскошь для человека, нам нужны решения этих задач уже сегодня. Давайте попробуем разобраться где конкретно сила квантового компьютера может нам помочь?

Для решения каких задач может использоваться квантовый компьютер?

Квантовый компьютер не способен полностью заменить классический, да это и не нужно. Обычный компьютер справляется со множеством задач, но, все таки, существует класс проблем, которые квантовая машина способна решить за час, в том время как классическим компьютерам понадобится время жизни Вселенной.

Известные на сегодняшний день задачи такого типа, можно разделить на 4 группы.

Задачи с преобразованием Фурье


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Это, в основном, задачи криптографии и шифрования: тот самый алгоритм Шора, который может позволить взломать RSA и Биткоин. Происходит это потому, что квантовое преобразование Фурье невероятно быстрое и, если найти ему правильное применение, то оно даёт экспоненциальное ускорение.

Задачи оптимизации


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Сюда входят комбинаторные проблемы, которые решаются лишь перебором всех возможных вариантов, например, лабиринт, который был рассмотрен выше. Другой нашумевший квантовый алгоритм, алгоритм Гровера, позволяет решать такие задачи быстрее обычного перебора, однако, не дает такого сильного ускорения как алгоритм Шора. Комбинаторные задачи постоянно возникают в сфере логистики, оптимизации и экономики.

Квантовое машинное обучение


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Третий квантовый алгоритм, дающий заметное ускорение — это алгоритм HHL. Он способен решать систему линейных уравнений экспоненциально быстрее любого классического алгоритма; как известно, линейные уравнения возникают повсюду, например, в задачах машинного обучения.

Quantum-assisted machine learning — это одно из самых полезных применений квантовых компьютеров. Да и вообще использование квантовой физики в задачах искусственного интеллекта это классно: можно, к примеру, использовать квантовые выборки, которые находятся в состоянии суперпозиции нескольких классических выборок.

Симуляции квантовой системы


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Это самое естественное применение квантовых компьютеров. Такой подход предложил ещё Фейнман: чтобы смоделировать очень сложную квантовую систему вам нужна другая сложная квантовая система, о которой вы все знаете и умеете ей управлять.

Поэтому полноценный квантовый компьютер поможет создать новые материалы, новые лекарства, высокотемпературные сверхпроводники. Это задачи, где надо хитрым образом организовать взаимодействие атомов, но чтобы понять как именно это сделать классическим компьютерам потребуется триллионы лет вычислений, в то время как большим квантовым — несколько часов.

Чем квантовый компьютер отличается от обычного?

Квантовые вычисления и квантовая связь — сами эти понятия были изобретены буквально 30 лет назад, и первые работы ученых даже не брали в научные журналы: говорили, что фантастика, а не наука. Сегодня же квантовые системы не только существуют, но и продаются за деньги, создавая и решая новые проблемы безопасности, в основном в сфере криптографии.

Квантовые компьютеры – это машины, основанные на уникальном поведении, описываемом квантовой механикой, и совершенно отличающимся от поведения классических систем. Одно из таких отличий – способность частицы или группы частиц в некотором отношении находиться только в двух дискретных квантовых базовых состояниях – назовем их 0 и 1.

Квантовый компьютер непригоден для большинства повседневных дел, зато способен быстро решить математические задачи, на которых основана современная криптография.

Принципиальным отличием квантового компьютера от обычного является то, что его операционная единица — кубит (квантовый бит) может находиться в состоянии неопределенности, или, если угодно, в нескольких состояниях одновременно. Звучит запутанно, еще сложнее на практике, но как показали годы исследований, это работает.

Приведем ключевые различия квантового и обычного компьютера:

Квантовый компьютер сильно отличается от классического и вряд ли пригоден для игры в «Тетрис», зато он неизмеримо быстрее обычного решает вероятностные и оптимизационные задачи.

Среди вещей, которые можно радикально ускорить квантовыми вычислениями, — оптимизация маршрутов транспорта, секвенирование ДНК, предсказание биржевых котировок и подбор криптографических ключей. Правда, ответ тоже всегда будет вероятностным, даже считать его с компьютера является сложной проблемой, но, сделав несколько довольно быстрых прогонов одной и той же задачи, можно прийти к одному-единственному, правильному ответу: в интересующем нас случае — ключу шифрования.

https://youtube.com/watch?v=S2idLWESSVI%3Fstart%3D7

Как работает обычный компьютер

Чтобы объяснить, что такое квантовый компьютер и как он работает, нужно начать издалека и рассказать, как работает компьютер обычный. Работа обычного компьютера определяется двумя параметрами: памятью, скоростью вычислений.

Память — основная характеристика вычислительной системы. Компьютер умеет читать, писать и обрабатывать информацию, которая хранится в памяти.

Компьютер выполняет простейшие операции: перемножения, вычитания, сложения чисел. Если выполнять эти операции много и быстро, то можно объединить их в программу, которая обрабатывает информацию. Так работают базы данных, поиск или нейронные сети. Здесь важна скорость вычислений или скорость выполнения операций (FLOPS).

Есть еще третий (дополнительный) параметр — детерминизм, общая характеристика для всех вычислительных систем. Означает, что все машины работают по программе, которая однозначна — ноль всегда ноль, а единица это точно единица. Никаких иных толкований не предусмотрено и нет элемента неопределенности.

Неопределенность можно внести только на уровне входных данных, например, случайными числами. Ввод может быть случайным, но программа всегда однозначно обрабатывает все входящие данные.

Ведущие игроки


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Слайды для этого раздела взяты из статьи Квантовый компьютер: большая игра на повышение. Лекция в Яндексе, от научного сотрудника Российского квантового центра Алексея Фёдорова. Позволю себе прямые цитаты:

Все технологически успешные страны в данный момент активно занимаются развитием квантовых технологий. В эти исследования вкладывается огромное количество средств, создаются специальные программы поддержки квантовых технологий.


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

В квантовой гонке участвуют не только государства, но и частные компании. Суммарно Google, IBM, Intel и Microsoft вложили около 0,5 млрд долларов в развитие квантовых компьютеров за последнее время, создали крупные лаборатории и исследовательские центры.


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

На Хабре и в Сети есть множество статей, например, вот, вот и вот, в которых текущее состояние дел с развитием квантовых технологий в разных странах рассматривается более подробно. Для нас сейчас главное, что все ведущие технологически развитые страны и игроки вкладывают огромные средства в исследования в этом направлении, что дает надежду на выход из текущего технологического тупика.

Возможные области применения квантовых компьютеров

Одна большая потенциальная область применения — это криптография. Вторая — оптимизационные задачи, которые возникают в самых разных областях.

Наука. Квантовые вычисления могут помочь предсказывать поведение элементарных частиц, моделировать молекулы ДНК или разрабатывать новые лекарственные препараты. Например, квантовые вычисления пытаются применять в фармакологии. Для этого нужно понимать, какую форму принимают разные протеины (про которые можно думать, как про микроскопические квантовые объекты). Мы не знаем, как они себя будут вести, но самый простой способ это понять — симулировать их поведение на квантовом компьютере. У этой научной задачи огромный бизнес-потенциал: новые лекарства, добавки, антибиотики.

Новые материалы. В науке о материалах главное — понять взаимодействие атомов, что можно смоделировать на квантовых компьютерах. Это тоже научная задача, но создав новый материал, его уже можно продавать.

Машинное обучение и искусственный интеллект. Машинное обучение — сложный процесс, который требует огромного количества вычислений. Пока здесь нет практической пользы от квантовых компьютеров, потому что они сейчас не на том уровне развития. Но в перспективе, квантовые компьютеры могут ускорить стандартные алгоритмы. В некоторых случаях это выглядит революционно, потому что можно в десятки раз сократить время обучения нейросети.

Транспорт, энергетика, логистика. В этих сферах много оптимизационных задач. Например, в энергетике главная проблема — распределение электрической энергии по стране. Цена на электричество в разных регионах отличается, при этом во время передачи часть энергии теряется, а с ней и прибыль. Чтобы заработать больше денег, бизнес пытается оптимизировать передачу. Это одна из тех задач, которая находится в классе NP. Сложно найти правильное решение, но квантовый компьютер может помочь.

Бизнес-приложения. В бизнесе квантовыми вычислениями занимаются только большие компании, корпорации. У гигантов есть деньги и ресурсы, например, у Google, D-Wave или IBM (лидер области с большими наработками).

На сайте компании D-Wave написано, что уже в 150 бизнес-приложениях используются квантовые вычисления. I BM выпустил брошюру, в которой обсуждается, что можно сделать с помощью квантового компьютера. Это десятки различных индустрий и потенциально сотни бизнес-решений. Так все выглядит на бумаге.


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

В реальности все немного иначе. Развитие технологий сейчас пока не на том уровне, чтобы применять их на практике.

Алгоритм Шора.

Наиболее известным квантовым алгоритмом является алгоритм Шора (придумал в 1994 году английский математик Питер Шор), который нацелен на решение задачи разложения чисел на простые множители (задача факторизации, дискретного логарифма).

Именно этот алгоритм приводят в пример, когда пишут о том, что ваши банковские системы и пароли скоро будут взломаны. Учитывая, что длина используемых на сегодняшний день ключей не менее чем 2048 бит, время для шапочки еще не пришло.

На сегодняшний день результаты более чем скромные. Лучшие результаты факторизации с помощью алгоритма Шора — числа 15 и 21, что сильно меньше, чем 2048 бит. Для остальных результатов из таблицы применялся иной алгоритм расчетов, но даже лучший по этому алгоритму результат (291311) сильно далек от реального применения.


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Подробнее про алгоритм Шора можно почитать, например, вот тут. Про практическую реализацию — тут.

Одна из текущих оценок сложности и необходимой мощности для факторизации числа из 2048 бит это компьютер с 20 миллионами кубитов. Спим спокойно.

Как работает квантовый компьютер

Он работает иначе — по интуитивно непонятной логике. Как и обычный, он проводит вычисления, но в его основе лежат законы квантовой механики.

Классический мир и классическая механика детерминистичны. Это значит, что значение любого регистра памяти в компьютере всегда 0 или 1, а тарелка всегда либо целая, либо разбита.

В квантово-механической системе нет такой четкости, а есть вероятность, которая определяет ее суть. Правильный вопрос здесь — какова вероятность, что тарелки разбились или целы, какова вероятность, что значения регистра 0 или 1?


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Вероятность — первое важное понятие в квантовой механике. С точки зрения квантовой механики «тарелки Шредингера» одновременно и целые, и разбитые. Есть некая вероятность того, что они целые, и некоторая вероятность, что разбитые. Эта неопределенность и отражает реальный физический мир.

На классическом уровне неопределенность маскирует наше незнание. Например, когда мы покупаем лотерейный билет «Спортлото», для нас появляется вероятность выиграть, потому что мы не знаем выигрышный номер.

Для классической физики лотерея — это не вероятностный процесс. Всегда можно описать движение руки, которая запускает барабан, скорость и траекторию каждого шарика. Теоретически, можно угадать выигрышный номер (хотя практически — сложно). В квантовой механике даже теоретически нельзя угадать, что произойдет в следующую секунду. Мы можем только предсказать это с точки зрения вероятности.

Второе понятие — принцип суперпозиции. Обычный бит находится только в значениях 0 или 1. В квантовых компьютерах нет обычных битов, а есть квантовые — кубиты. Квантовый бит находится в состоянии 0 или 1 с какой-то вероятностью. Кубит может находиться одновременно в этих состояниях, притом в разных комбинациях — в суперпозиции этих состояний.

Когда система (кубит) находится одновременно в состоянии 0 или 1, можно говорить только о вероятностях. Если состояний много, система одновременно находится во всех возможных состояниях, но с меньшей вероятностью для каждого. Это принципиально важно.

В классической программе в каждый конкретный момент времени каждая строка программы работает с определенной ячейкой памяти. В квантовой механике можно работать со всеми ячейками памяти одновременно.

«Память» квантового компьютера

В чем основная разница между квантовой и классической памятью компьютера? В обычном компьютере мы записываем числа в двоичном коде. Например, число 8 в двоичной системе выглядит как 00001000, и для его записи достаточно 4 битов.

В квантовых компьютерах кубиты находятся в состоянии 0 или 1 с какой-то вероятностью. Вероятность — это число. Чтобы записать одно число с бесконечной точностью, нужно бесконечное количество битов. Поэтому, в теории, один кубит — это физическая система с бесконечным количеством памяти.

На практике у методов измерения ограниченная точность. Будем считать, что она соответствует обычной машинной (float). Получается, что кубит содержит два числа: вероятности, что кубит в состоянии 0 и в состоянии 1.

Примечание: для упрощения мы игнорируем, что сумма вероятностей кубита в состоянии 0 и 1 должна равняться единице. Основной вывод не зависит от упрощения.

Один кубит соответствует двум вещественным числам (float). Это большой выигрыш, потому что для двух вещественных чисел на обычном компьютере нужно два машинных слова — 128 обычных битов, а мы обошлись одним квантовым. Может показаться, что квантовый компьютер в 128 раз лучше обычного. Но это не так.

Квантовый компьютер экспоненциально лучше обычного.

Один кубит это 2 вещественных числа. Два кубита — 4 вещественных числа. Но восемь кубитов это 256 потенциальных конфигураций восьми нулей и единиц — два в восьмой степени.

Для одного кубита выигрыш в 128 раз, а для восьми кубитов он существенно больше — 256*128. Система n кубитов в памяти эквивалентна

Емкость квантовой памяти растет в геометрической прогрессии.

Память обычного ноутбука эквивалентна 15 кубитам, 40 кубитов равны памяти самых мощных вычислительных центров, а 50-60 кубитов превышают суммарную память всех вычислительных центров всего мира.

Три-четыре кубита эквивалентны увеличению обычной классической памяти в 10-20 раз. Квантовая память значительно более емкая, чем любые другие классические способы записи информации. В этом главный потенциал квантовых вычислений.

Но экспоненциальный рост емкости квантовой памяти вызывает проблему размерности. Из-за проклятия размерности сложно описать такую квантовую систему на классическом компьютере — требуется все больше и больше памяти.

Какие задачи может решить квантовый компьютер

Если квантовый мир работает на уровне неопределенности, как вообще возможно что-то посчитать? У квантовой механики вероятностная природа, а нам нужен точный ответ. Как все будет работать, если нужно просто перемножить два числа?

Объясню на примере задач класса NP, то есть задач разрешимости, решение которых невозможно найти за полиномиальное время — во всяком случае, в предположении

. Однако, правильность решения за полиномиальное время проверить можно. Это похоже на взлом закрытого замка: мы не умеем пользоваться отмычками, но можем быстро проверить любой ключ, если он есть.

Благодаря принципу суперпозиции квантовая система находится сразу во всех состояниях и ищет лучший вариант. Однозначного ответа система не дает, но повышает вероятность того, что лучший вариант является решением. Когда система остановится на каком-то решении, мы сможем довольно быстро проверить его на правильность.

Если окажется, что ответ неверен, запустим квантовый компьютер еще раз. Вероятность получения правильного ответа больше 50%, а часто гораздо больше. Значит, за 2-4 запуска квантового алгоритма мы получим правильный ответ.

У нас не будет однозначного ответа, а только вероятность получить правильный ответ. Но эта вероятность весьма высока. Фактически, мы гадаем, но не на кофейной гуще, а на научной. За несколько итераций мы найдем ответ и проверим, что он правильный.

Параметры квантового компьютера

У классического компьютера два параметра качества: объем памяти и количество операций. С обычным компьютером мы по умолчанию предполагаем, что у нас есть доступ ко всем ячейкам памяти для записи и чтения.

В квантовом случае есть три параметра.

Объем памяти или количество кубит. Чем больше памяти, тем лучше? Для квантового компьютера нет — когда мы увеличиваем количество кубит, растет сложность квантовой системы. Систему становится тяжело поддерживать в изолированном состоянии.

Время работы или количество последовательных операций (когерентность). Систему обязательно требуется поддерживать в изолированном состоянии — в физике это называется когерентность. Если позволить квантовой системе взаимодействовать с окружающей средой, то это разрушит состояние ячеек квантовой памяти. Вместо нулей и единиц будет просто шум.

Мы пытаемся поддерживать систему изолированной как можно дольше. Но чем больше квантовых операций проводим, тем больше времени на них уходит, а значит все сложнее поддерживать систему в изолированном состоянии.

Примечание: здесь количество операций не в секунду, а за все время работы системы.

Возникает парадокс: чем больше кубитов, тем меньше операций доступно. Поэтому время, в течении которого можно держать систему изолированной и произвести некоторое количество операций, это важный параметр.

Представьте обычный компьютер, в котором нет охлаждения. Пока компьютер не перегреется, у него есть время что-то посчитать, а потом он отключается. Примерно то же самое происходит в квантовом компьютере. В нем нет «вентилятора»: чем больше работает, тем больше нагревается, пока не разрушится. Поэтому есть ограничение на количество операций.

Универсальность. В классическом компьютере доступны любые операции: умножение, деление, вычитание. Теоретически, в квантовом тоже. Но на практике, существенно проще проводить операции только с соседними кубитами, которые расположены на прямой, в прямоугольном или квадратном массиве. Для работы со всеми кубитами требуется очень сложная архитектура — на практике пока так не умеют.


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Все три направления конфликтуют друг с другом. Мы можем улучшить одно, но это произойдет за счет ухудшения двух других. Сейчас, когда технология в зачаточном состоянии, можно выделить несколько прототипных платформ, и каждая из них пытается улучшить показатели одного направления за счет двух других.

Резюме

Квантовые компьютеры и квантовые вычисления — очень многообещающая, очень молодая и пока малоприменимая в промышленном плане область информационных технологий.

Развитие квантовых вычислений позволит (когда-нибудь) решать задачи:

Основные проблемы при создании и эксплуатации квантовых компьютеров:

Состояние дел на текущий момент:

Что может помочь:

На мой взгляд (исключительно личное мнение), в текущей научной парадигме знаний мы не добьемся значительных успехов в развитии квантовых технологий, тут нужен качественный прорыв в какой-либо области фундаментальной или прикладной науки, который даст толчок новым идеям и методам.

Ну а пока — нарабатываем опыт в квантовом программировании, собираем и создаем квантовые алгоритмы, тестируем идеи и прочее и прочее. Ждем прорыва.

Первый в мире протокол квантового интернета

Нидерландские ученые разработали первый в мире протокол для так называемого квантового интернета, работающего без помех и максимально защищенного от взлома. Идея принадлежит специалистам исследовательского центра QuTech.

Протокол, работающий на канальном уровне, разработан группой ученых под руководством профессора Стефани Вейнер (Stephanie Wehner). Также они проработали общую концепцию квантовых сетей, которые в будущем, по их мнению, могут заменить собой традиционный интернет и локальные сети.

В основе идеи специалистов QuTech лежит принцип очень быстрой обработки кубитов, поскольку они не могут находиться в памяти длительное время. Это обеспечит высокую скорость передачи информации, а явление квантовой запутанности, еще одна основа протокола, даст возможность максимально защитить передаваемые данные.

Явление квантовой запутанности подразумевает взаимозависимость двух и более объектов, в данном случае кубитов, и их неразрывную связь друг с другом. Попытка перехвата данных приведет к изменению квантового состояния одного или нескольких кубитов и, как следствие, к потере передаваемой информации. Другими словами, информацию может получить исключительно целевое устройство – несанкционированный доступ к ней исключен.

Технические подробности о работе первого протокола квантовой сети Стефании Вейнер оставила в тайне. Она уточнила лишь, что для работы квантового интернета вполне сгодится физическая инфраструктура обычного интернета.

Квантовые алгоритмы

Как уже говорилось, обычные алгоритмы, основанные на бинарной логике, неприменимы к квантовому компьютеру, использующему квантовую логику (квантовые вентили). Для него пришлось придумывать новые, в полной мере использующие потенциал, заложенный в квантовую природу вычислений.

Наиболее известные на сегодняшний день алгоритмы это:

В отличие от классических, квантовые компьютеры не универсальны.
До сих пор найдено лишь небольшое число квантовых алгоритмов.(С)

Спасибо oxoron за ссылку на Quantum Algorithm Zoo, место, где, по уверениям автора (“Stephen Jordan”), собраны и продолжают собираться лучшие представители квантово-алгоритмического мира.

В данной статье мы не будем подробно разбирать квантовые алгоритмы, в Сети много прекрасных материалов на любой уровень сложности, но кратко пробежаться по трем самым известным все-таки надо.

Сравнение квантового компьютера и обычного

Давайте теперь сравним обычный компьютер и квантовый.

В обычном компьютере это бит. Хорошо нам знакомый насквозь детерминированный бит. Может принимать значения либо 0 либо 1. Он прекрасно справляется с ролью логической единицы для обычного компьютера, но совершенно не подходит для описания состояния квантового объекта, который, как мы уже говорили, в дикой природе находится в суперпозиции своих граничных состояний.

На текущем технологическом уровне развития физической реализацией бита для обычного компьютера выступает полупроводниковый транзистор, для квантового, как мы уже говорили, любой квантовый объект. В следующем разделе мы поговорим о том, что сейчас используется в качестве физических носителей кубитов.

Для обычного компьютера это электрический ток — уровни напряжения, наличие или отсутствие тока, и т.д., для квантового — то самое состояние квантового объекта (направление поляризации, спин, и т.д.), которое может находится в состоянии суперпозиции.

Для реализации логических схем на обычном компьютере используются всем нам хорошо известные логические операции, для операций над кубитами пришлось придумывать совершенно иную систему операций, называемую квантовыми вентилями. Вентили бывают однокубитные и двухкубитные, в зависимости от того, над сколькими кубитами производится преобразование.

Примеры квантовых вентилей:


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Есть понятие универсального набора вентилей, которых достаточно для выполнения любого квантового вычисления. Например, универсальным является набор, включающий вентиль Адамара, вентиль фазового сдвига, вентиль CNOT и вентиль π⁄8. С их помощью можно выполнить любое квантовое вычисление на произвольном наборе кубитов.

В этой статье мы не будем детально останавливаться на системе квантовых вентилей, более подробно про них и логические операции над кубитами можно почитать, например, вот тут. Главное, что надо запомнить:

Один транзистор нам совершенно бесполезен, чтобы производить вычисления нам надо соединить много транзисторов между собой, то есть создать полупроводниковый чип из миллионов транзисторов, на которых уже строить логические схемы, АЛУ и, в конечном счете, получить современный процессор в его классическом виде.

Один кубит нам тоже совершенно бесполезен (ну если только в академическом плане),

чтобы производить вычисления нам нужна система кубитов (квантовых объектов)

которая, как мы уже говорили, создается при помощи запутывания кубитов между собой так, чтобы изменения в их состояниях происходили согласованно.

Стандартные алгоритмы, которые накопило человечество к текущему моменту, совершенно не подходят для реализации на квантовом компьютере. Да в общем-то и незачем. Квантовые компьютеры, основанные на вентильной логике над кубитами, требуют создания совершенно иных алгоритмов, квантовых алгоритмов. Из наиболее известных квантовых алгоритмов можно выделить три:

И самое главное отличие — это принцип работы. У стандартного компьютера это цифровой, жестко детерминированный принцип, основанный на том, что если мы задали какое-то начальное состояние системы и пропустили его через заданный алгоритм, то результат вычислений будет один и тот же, сколько бы раз мы это вычисление не запускали. Собственно, такое поведение это именно то, что мы от компьютера и ждем.

Квантовый компьютер работает на аналоговом, вероятностном принципе. Результат работы заданного алгоритма на заданном начальном состоянии представляет собой выборку из вероятностного распределения конечных реализаций алгоритма плюс возможные ошибки.

Такая вероятностная природа квантовых вычислений обусловлена самой вероятностной сутью квантового мира. “ Бог не играет в кости со вселенной”, — говорил старик Эйнштейн, но все эксперименты и наблюдения пока (в текущей научной парадигме) подтверждают обратное.

Архитектура процессора


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

В теории мы строим и оперируем схемами из десятков запутанных кубитов, в реальности же все сложнее. Все существующие квантовые чипы (процессоры) построены таким образом, что обеспечивают безболезненное запутывание одного кубита только со своими соседями, которых не больше шести.

Если же нам надо запутать 1-й кубит, скажем, с 12-м, то нам придется строить цепочку дополнительных квантовых операций, задействовать дополнительные кубиты и прочее, что увеличивает общий уровень ошибок. Да, и не забывайте про время декогеренции, возможно к тому моменту, когда вы закончите связывать кубиты в нужную вам схему, время закончится и вся схема превратится в симпатичный генератор белого шума.

Также не забывайте, что архитектура у всех квантовых процессоров разная, и программу, написанную в эмуляторе в режиме “связность всех со всеми” нужно будет “перекомпилировать” в архитектуру конкретного чипа. Есть даже специальные программы оптимизаторы для выполнения этой операции.

Максимальная связность и максимальное количество кубитов для тех же топовых чипов:

И, для сравнения, таблица с данными предыдущего поколения процессоров. Сравните количество кубитов, время декогеренции и процент ошибок с тем, что мы имеем сейчас у нового поколения. Все-таки прогресс потихоньку, но движется.


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Декогеренция

Описание от N+1.

Квантовое состояние очень хрупкая штука, кубиты в запутанном состоянии крайне нестабильны, любое внешнее воздействие может разрушить (и разрушает) эту связь. Изменение температуры на мельчайшую долю градуса, давление, пролетевший рядом случайный фотон — все это дестабилизирует нашу систему.

Для решения этой проблемы строят низкотемпературные саркофаги, в которых температура (-273.14 градуса цельсия) чуть-чуть выше абсолютного ноля, с максимальной изоляцией внутренней камеры с процессором от всех (возможных) воздействий внешней среды.

Максимальное время жизни квантовой системы из нескольких запутанных кубитов, в течение которого она сохраняет свои квантовые свойства и может быть использована для произведения вычислений, называют временем декогеренции.

На текущий момент время декогеренции в лучших квантовых решениях составляет порядка десятков и сотен микросекунд.

Есть прекрасный сайт, на котором можно посмотреть сравнительные таблицы параметров всех созданных квантовых систем. В эту статью для примера вынесены только два топовых процессора — от IBM IBM Q System One и от Google Sycamore. Как мы видим, время декогеренции (Т2) не превышает 200 мкс.

Я не нашел точных данных по Sycamore, но в самой статье о квантовом превосходстве приводятся две цифры — 1 миллион вычислений за 200 секунд, в другом месте — за 130 секунд без потерь на управляющие сигналы и прочее. В любом случае это дает нам время декогеренции порядка 150 мкс. Помните нашего экспериментатора с мешком? Ну так вот он.

Чем нам грозит декогеренция?

Основная проблема в том, что через 150 мкс наша вычислительная система из N запутанных кубитов начнет выдавать на выходе вместо вероятностного распределения правильных решений — вероятностный белый шум.

То есть нам надо:

И сделать все это за 150 мкс. Не успел — результат превратился в тыкву.

Прототипы

Выделю три прототипа, над которыми работают крупные компании. Google, IBM, Intel, Microsoft вкладываются в развитие квантовых компьютеров. Все вместе они вложили больше 500 млн долларов в разработку, лаборатории и исследовательские центры.

Первые классические компьютеры занимали целые комнаты, работали на вакуумных лампах и так нагревались, что для них требовалось отдельное мощное охлаждение. Квантовые компьютеры на них очень похожи — это шкафы высотой по 3 метра, большую часть которых занимают системы охлаждения. Компьютеры охлаждают до температуры близкой к абсолютному нулю, чтобы квантовые системы могли выполнять свои вычислительные функции.

Универсальные квантовые компьютеры

Это универсальные машины от Google и IBM с памятью примерно 20 кубит. Они выполняют любые операции, потому что полная универсальность доступна с относительно небольшим числом кубитов, дальше возникает практическое ограничение. Возможно, через год люди научатся работать с 30-40 кубитами.

Универсальные квантовые компьютеры способны реализовать произвольные квантовые алгоритмы, например, алгоритмы Шора и Гровера.

Современная криптография основана на разложении чисел на простые множители. В настоящее время неизвестно, существует ли полиномиальный не квантовый алгоритм для задачи факторизации. Однако 25 лет назад Питер Шор опубликовал статью, в которой объяснил, как квантовый компьютер может разложить очень большое целое число на простые множители.

Квантовый алгоритм компьютера работает не детерминистически, а угадывает простые множители с вероятностью правильного ответа больше 50% и находит простые множители экспоненциально быстрее, чем обычный.

С распространением квантовых компьютеров все современные методы шифрования окажутся уязвимы, и это основная мотивация в разработке квантовых алгоритмов последние 25 лет. Но пока применить метод Шора пока сложно, потому что алгоритм требует большой квантовый компьютер. Маленькие решают задачу только для небольших чисел.

Другим примером, демонстрирующим потенциал квантовых вычислений, является Алгоритм Гровера для задачи перебора или поиска решения уравнения

какая-то сложная функция.

Кроме упомянутых выше алгоритмов Шора и Гравера есть большое количество других квантовых алгоритмов. Любая физическая система хочет перейти в состояние равновесия — квантовая не исключение. С научной точки зрения правильнее говорить не о равновесии, а об основном состоянии системы. Классический аналог — состояние покоя. Система всегда стремится перейти в состояние покоя с минимальной энергией. В терминах вычислительных задач — это оптимизационная задача минимизации энергии. Квантовый компьютер как раз может решать подобные задачи.

Вся область применимости квантовых алгоритмов и компьютеров пока не понятна. Но уже есть десятки различных оптимизационных задач, с которыми квантовые компьютеры и алгоритмы могут справиться, и находятся новые.

Квантовые симуляторы ограниченной универсальности

Это другое направление: универсальность ограничивается, но поддерживается изоляция (когерентность). Это компьютеры на рубеже в 50-70 кубитов, что в смысле памяти уже больше, чем любой суперкомпьютер.

На этой границе возможности специализированного квантового компьютера превосходят возможности классического — возникает квантовое превосходство. Это значит, что квантовые компьютеры могут решать некоторые задачи, на которые у обычных (даже суперкомпьютеров) уйдут десятки, сотни или тысячи лет.

В октябре 2019 Google заявил, что достиг квантового превосходства. Новость появилась во всех ведущих газетах и журналах, соответствующая научная статья была опубликована в Nature. Тематические статьи выпустили многие газеты, даже New York Times и Wall Street Journal, которые далеки от науки.

В реальности Google разработал квантовый процессор с ограниченной универсальностью. У него достаточно большое количество кубитов, и он может выполнять некоторые узкие задачи лучше, чем любой классический компьютер. Другой вопрос, что это очень узкие и искусственные задачи.

Некогерентные процессоры с числом кубитов от 2 тысяч

Если забыть про универсальность и когерентность, можно добавлять 2 или даже 3-4 тысячи кубитов. Этим направлением занимается компания D-Wave из Канады. У них есть процессоры с тысячей кубитов, но без когерентности.

Физические реализации кубитов


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Как мы уже говорили, кубит может быть представлен квантовым объектом, то есть таким физическим объектом, который реализует описанные выше квантовые свойства. То есть грубо говоря, любой физический объект, в котором есть два состояния и эти два состояния находятся в состоянии суперпозиции можно использовать для построения квантового компьютера.

“Если мы умеем помещать атом в два разных уровня и управлять ими, то вот вам и кубит. Если мы можем это сделать с ионом, — кубит. С током то же самое. Если мы запускаем его по часовой стрелке и против часовой стрелки одновременно, вот вам кубит.” (С)

Из всего этого многообразия наиболее проработанным является первый метод получения кубитов, основанный на сверхпроводниках. Google, IBM, Intel и прочие ведущие игроки используют именно его для построения своих систем.

Ну и еще почитайте обзор возможных физических реализаций кубитов от Andrew Daley,2014.

Какие компании разрабатывают квантовые компьютеры уже сегодня?


ЗАДАНИЕ 5 ПРИНЦИПЫ РАБОТЫ КВАНТОВОГО КОМПЬЮТЕРА

Формально дальше всех в этой гонке продвинулась канадская компания D-Wave. Она создала и успешно продает единственные представленные сегодня на рынке квантовые компьютеры. Среди ее клиентов — Google, NASA, Volkswagen и Lockheed Martin. В конце января этого года D-Wave анонсировала выпуск коммерческой версии квантового компьютера четвертого поколения D-Wave 2000Q. Его мощность, как утверждают в компании составляет 2000 кубитов. Однако многие сомневаются в том, что машины D-Wave можно называть полноценными квантовыми компьютерами, поскольку они способны решать лишь узкий круг вычислительных задач. С этим мнением не согласны в Google. Купленный поисковиком у D-Wave компьютер (кстати, он стоит от $10 млн до $15 млн) справился с некой специальной задачей в 100 миллионов раз быстрее обычного.

Американская IBM готовится вывести на рынок квантовые компьютеры с вычислительной мощностью 50 кубитов. Произойдет это, как утверждают в компании, уже в ближайшие несколько лет. С помощью квантовых компьютеров, получивших предварительное название IBM Q, можно будет, в частности, «распутать» сложные молекулярные и химические взаимодействия, что приведет к открытию новых лекарств и материалов, считают в IBM. Большие изменения ждут сферу логистики: будут найдены оптимальные пути для наиболее эффективной доставки товаров. Квантовые компьютеры также позволят найти новые способы моделирования финансовых данных и выделить ключевые глобальные факторы риска, что обезопасит инвестиции. В сфере искусственного интеллекта и машинного обучения можно будет обрабатывать очень большие объемы данных (например, связанные с поиском изображений или видео). « Мы сейчас переходим от стадии, на которой речь идет лишь об игрушках исследователей, к ситуации, позволяющей оценить новшество с коммерческой точки зрения», — отметил технический директор квантового центра IBM Скотт Краудер. Ранее IBM создала квантовый компьютер мощностью 5 кубитов.

Практически одновременно с IBM о планах выпустить коммерческий 50-кубитовый квантовый компьютер заявила компания Google. Причем сроки названы примерно те же — ближайшие 5 лет. « В области квантовых вычислений скоро будет достигнута историческая веха», — написали исследователи из лаборатории Quantum AI компании Google в своей статье, опубликованной в журнале Nature. Над созданием квантового компьютера поисковик начал работать еще в 2014 году.

Успехи конкурентов подстегивают еще одного крупного игрока — компанию Microsoft. В ноябре прошлого года она объявила о решении удвоить свои усилия в области создания квантового компьютера. В отличие от IBM и Google, компания Билла Гейтса делает ставку на интригующую, но пока недоказанную концепцию топологического квантового вычисления. « Я думаю, что мы находимся на пороге перехода от исследований к разработке», — сказал вице-президент квантовой программы Microsoft Тодд Холмдал. Одновременно компания разрабатывает программное обеспечение для будущих супермашин.

Всего, по данным аналитической компании CB Insights, над задачей создания квантового компьютера бьются не менее 18 корпораций. Среди них — авиастроительные компании Airbus и Lockheed Martin, китайский интернет-ритейлер Alibaba, британская телекоммуникационная компания British Telecommunications, компании Hewlett Packard, Toshiba, Intel, Mitsubishi, Nokia.

Эксперты Массачусетского технологического института (MIT) ожидают, что полноценные квантовые компьютеры, обрабатывающие информацию в разы быстрее современных суперкомпьютеров, появятся на рынке в течение ближайших пяти лет.

Про урокцифры:  МУЗЫКА ДЛЯ ИСКУССТВА И МУЗЫКА ДЛЯ ВДОХНОВЕНИЯ И ТВОРЧЕСТВА БЕЗ СЛОВ И БЕЗ АВТОРСКИХ ПРАВ СКАЧАТЬ И СЛУШАТЬ ОНЛАЙН

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *