В европейской традиции исторически сложились два варианта системы наименования больших чисел.
Термин «миллион» итальянского происхождения и встречается уже в первой печатной арифметике (анонимной), вышедшей в итальянском городе Тревизо в 1478 году, и ещё ранее в нематематической книге путешественника Марко Поло (умер в 1324 году), а в форме «миллио» еще раньше — в рукописи 1250 года.
В рукописи французского математика XV века Никола Шюке впервые появляются термины «биллион» — 1012, «триллион» — 1018 и дальнейшие; в печатном руководстве биллион в значении 1012 появляется в 1602 году.
В XVII веке во Франции начали употреблять короткую шкалу: «биллион» — 109, «триллион» — 1012 и т. д.
Слово «миллиард», имевшее вначале значение 1012, получило значение 109 (тысячи миллионов) в «Арифметике» Траншана (1558) и употреблялось во Франции в XIX веке наравне со словом «биллион». В Германии это слово вошло в употребление лишь после получения от Франции 5 миллиардов контрибуции после франко-прусской войны 1871 года.
Для чтения чисел с большим количеством цифр анонимная рукопись 1200 года впервые рекомендует разбить цифры на группы по 3 или отмечать группы точками вверху или дугами; это же затем рекомендует Леонардо Пизанский (1228). К этой системе приходят и последующие авторы, однако они не предлагали названий. Введённые Шюке наименования больших чисел, но с группировкой цифр по 6 относятся к системе наименования чисел с длинной шкалой.
Использование систем наименования чисел в мире:
В России первоначально была введена система наименования чисел с длинной шкалой, и, по-видимому, в печатном виде впервые в 1703 году в «Арифметике» Л. Ф. Магницкого. Однако в конце XVIII века, в царствование императора Павла I, вслед за Францией произошёл переход на короткую шкалу. Так, в опубликованном в 1798 году переводе части первой — «Арифметика» — «Курса математики» Этьенна Безу введена система наименования чисел с короткой шкалой, при том, что в опубликованной в 1791 году книге «Арифметика или числовник» Н. Г. Курганова (1725 или 1726—1796) используется длинная шкала. Длинная шкала встречается и в некоторых русских учебниках XIX века, однако к XX веку фактически закрепилась короткая шкала.
В США короткая шкала используется с XIX века; Великобритания перешла на неё в 1974 году.
Система наименования чисел с короткой шкалой используется в России и других странах бывшего СССР, англоязычном и арабоязычном мире, Бразилии, Болгарии, Греции, Румынии и Турции. При этом вместо слова «биллион» обычно используется слово «миллиард», за исключением англоязычного мира и Бразилии.
Количество нулей числа с короткой шкалой определяется по формуле 3·(n+1), где n1 — степень из названия числа, добавляемая к первой степени тысячи.
Таблица от значения к названию
Существует десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Числа состоят из цифр. Число 52 состоит из двух цифр: 5 и 2. Числа с 1 впереди и последующими нулями имеют названия. Всем известны: 10 — десять, 100 — сто, 1000 — тысяча, 1 000 000 — миллион. Так как большие числа с большим числом нулей записывать неудобно, используют сокращения в виде степеней: запись 1011 означает число с 11-ю нулями, запись 1052 означает число с 52-мя нулями и т.д. Приведем названия чисел с десятками и сотнями нулей.
Названия «круглых» чисел, которые можно встретить в школьной программе: 1 000 000 — миллион 1 000 000 000 — миллиард или биллион 1 000 000 000 000 — триллион 1 000 000 000 000 000 — квадриллион 1 000 000 000 000 000 000 — квинтиллион 1 000 000 000 000 000 000 000 — секстиллион 1 000 000 000 000 000 000 000 000 — септиллион 1 000 000 000 000 000 000 000 000 000 — октиллион 1 000 000 000 000 000 000 000 000 000 000 — нониллион 1 000 000 000 000 000 000 000 000 000 000 000 — дециллион
Еще некоторые примеры интересных названий: 10100 — гугол, googol 1010100 — гуголплекс, googolplex (десять в степени гугол) 10140 — асанкхейя, asankhyeya или сто квинквадрагинтиллионов 10303 — центиллион, centillion 103003 — миллиллион, millillion 103000003 — милли-миллиллион, milli-millillion
Самого большого числа в мире не существует, так как любое большое число всегда можно увеличить, умножить, возвести в степень, и получится другое большее число. Бесконечность не является числом.
Из известных самых больших чисел, имеющих название (математическое доказательство) можно выделить: число TREE
, число SCG
, число Лоудера, число Мозера, число Скьюза, число Райо, число Грэма, инфитеиплеон.
Таблица больших чисел с указанием количества нулей и названиями на русском и английском.
Запрос «Цифра» перенаправляется сюда; см. также другие значения.
Цифры числовой системы майя с западными арабскими эквивалентами
Ци́фры (от ср.-лат. cifra от араб. (ṣifr) «пустой, нуль») — система знаков для записи конкретных значений чисел. Цифрами называют только такие знаки, которые сами в отдельности описывают определённые числа (так например, знак минуса − или десятичной запятой , хоть и используются для записи чисел, но цифрами не являются). Слово «цифра» в данной статье без уточнения обычно означает один из следующих десяти знаков (т. н. «арабские цифры»):
0 1 2 3 4 5 6 7 8 9
Существуют также много других систем записи чисел:
Во множественном числе в обиходной речи слово цифры также может обозначать «числовые данные», так как любое число записывается набором цифр. Например, выражение «приведём такие „цифры“» на самом деле говорит о числах, и даже когда речь идёт об одном числовом данном, записанном одной цифрой, следует употреблять множественное число. Однако неверно говорить «здесь цифры больше», так как сравниваются не цифры, а числа.
Само слово цифра происходит от арабского صفر (ṣifr) «ничего, ноль» и в современном русском языке пишется через букву «и», в отличие от слов-исключений: цыган, цыплёнок, цыпочки и др.
В древнейшие времена числа обозначались прямолинейными пометками («палочками»); одна палочка изображала единицу, две палочки — двойку и т. д. Этот способ записи происходит от зарубок. Он и поныне сохранился в «римских цифрах» для изображения чисел 1, 2, 3. Индийское происхождение «арабских цифр» было признано в науке лишь в XIX веке. Первым учёным, высказавшим эту, для того времени новую, мысль, был русский востоковед Георгий Яковлевич Кер (1692—1740). Кер с 1731 года служил в Москве переводчиком коллегии иностранных дел.
Национальные варианты арабско-индийских десятичных цифр
А — западные арабские, Б — восточные арабские, В — персидские, Г — деванагари, Д — бенгальские, Е — гурмукхи, Ж — гуджарати, З — ория, И — тамильские, К — телугу, Л — каннада, М — малаялам, Н — тайские, О — лаосские, П — тибетские, Р — бирманские, С — кхмерские, Т — монгольские, У — лимбу, Ф — новые тай лы, Х — яванские
Использование на монетах
На монетах в Европе индийские цифры впервые появляются в 976 году в Испании, где имелись непосредственные связи с арабами.
Для термина «большие числа (значения)» см. также другие значения.
Несмотря на то что гугология — современный термин, история изучения человеком больших чисел уходит в глубокую древность.
I век н. э. — В буддистском священном тексте Аватамсака-сутра было упомянуто число
1928 год — Вильгельм Аккерман опубликовал свою функцию.
2006 год — Х. Фридман дал определение быстрорастущим функциям SCG(n) и SSCG(n).
2007 год — Д. Бауэрс определил ещё более мощную нотацию BEAF (данная нотация хорошо определена до , числа, превосходящие этот уровень, вызывают противоречивость оценок).
Числа, приведённые ниже, находятся уже за пределами применения нотаций Кнута и Конвея.
Применение больших чисел в других областях науки
Время на прочтение
В этой статье я хочу поделиться с вами некоторыми впечатляющими фактами из окружающего нас мира. Мы рассмотрим по-настоящему большие и даже гигантские числа, с которыми можем столкнуться либо в реальности (порой сами того не замечая), либо в расчетах, говорящих кое-что важное о нашей Вселенной. Некоторые числа настолько поражают воображение, что даже для того чтобы только их представить, уже необходимо приложить немало умственных усилий. Статья будет построена следующим образом. Мы будем двигаться по пути возрастания степеней десятки, начав от миллиона и дальше, насколько у нас хватит знаний, терпения и сил. Давайте же отправимся в путь.
Миллион = 1 000 000 = 10⁶
Наша первая остановка — «миллион» или 10 в 6-й степени. Это большое число, но все-таки оно не поражает воображение настолько, насколько это делают те числа, к которым мы перейдем вскоре. С миллионами чего-либо мы сталкиваемся довольно часто. До миллиона можно даже досчитать, и один весьма необычный человек по имени Джереми Харпер сделал это, транслируя свой трехмесячный счетный марафон в Интернет. Кстати, миллион секунд — это всего-навсего 11,5 дней. Миллиона рублей может не хватить для покупки хорошего автомобиля или скромной квартиры в Санкт-Петербурге. Стопка из миллиона книг, поставленных друг на друга, не выйдет даже за пределы атмосферы Земли. В свою очередь, из миллиона букв можно составить одну, достаточно большую, книгу (например, полная Библия состоит из более чем 2,5 миллионов букв). Миллион горошин поместится в большом мешке, который в принципе можно будет даже приподнять, если вы не боитесь надорваться. Миллион песчинок запросто поместится в пригоршне.
А миллион бактерий будет едва различим невооруженному глазу. Человеческий волос, увеличенный в миллион раз, будет диаметром около 100 метров. Здание в миллион этажей (если бы такое можно было построить) поднялось бы в высоту на 2,5 тысячи километров, — в 4 с лишним раза выше, чем летает телескоп Хаббла и большинство искусственных спутников Земли.
Миллиард = 1 000 000 000 = 10⁹
Всё это достаточно любопытно, но особо не впечатляет. Впрочем, мы только начали свой путь. И наше следующее число — «миллиард» или 10 в 9-й степени. С миллиардами мы встречаемся гораздо реже. Если мы хотим увидеть миллиард чего-либо и при этом не быть раздавленными, то придется брать что-то очень, очень маленькое. Например, молекулы. Конечно, одна молекула невооруженным взглядом не видна (да и не во всякий микроскоп ее можно разглядеть). А вот миллиард молекул, поставленных «плечом к плечу», займут около 30 сантиметров (вообще, молекулы сильно различаются по своим размерам и для примера мы взяли молекулу воды, состоящую, как известно, из двух атомов водорода и одного атома кислорода). Сумму в миллиард долларов еще можно как-то представить. Это цена какого-нибудь суперсовременного боевого самолета или военного авианосца (да, война это очень дорогостоящее мероприятие). Стоимость Большого Адронного Коллайдера — около 10 миллиардов долларов. Головной мозг человека состоит из 100 миллиардов нейронов.
И столько же, но только людей, жило на нашей планете за всю ее историю. Теперь давайте посмотрим наверх. Если разделить расстояние от Земли до Луны на миллиард, то получится примерно 40 сантиметров. А если на тот же миллиард разделить расстояние от Земли до Солнца, то получится уже 150 метров, а это большой такой небоскреб высотой почти в половину Эйфелевой башни. Сама Земля, уменьшенная в миллиард раз, станет размером с виноградину, — и, кстати, тогда она превратится в черную дыру. Космические аппараты «Вояджер», запущенные в 1977 году, пролетели почти по 20 миллиардов километров каждый. Космос по-настоящему огромен, и мы еще ощутим это в полной мере, когда перейдем к числам гораздо большим. А что насчет времени? Миллиард секунд — это 31,7 года, целое поколение. Если увеличить атом водорода в миллиард раз, то его диаметр составит целых 10 сантиметров, хотя его ядро даже при таком увеличении все равно не разглядишь. В этом масштабе мельчайшие вирусы будут гигантами размером в несколько десятков, а то и сотен метров. И даже молекула ДНК будет шириной в целых 3 метра.
Триллион = 1 000 000 000 000 = 10¹²
Наш третий гость — «триллион» или 10 в 12-й степени. И чтобы представить его наглядно, уже придется потрудиться. Например, что может стоить триллион долларов? По некоторым подсчетам, это цена экспедиции на Марс. А как вы думаете, сколько всего наличных денег на планете Земля? Около 4 триллионов долларов. Забавно, что государственный долг США почти в 5 раз больше. А если сложить вообще всё то, что можно купить сегодня за деньги, то это будет стоить почти 100 триллионов долларов.
Общая масса воздуха, который вдыхают все люди на нашей планете за 1 год, составляет около 6 триллионов килограмм. В океанах нашей планеты обитает около триллиона рыб. Триллион секунд, как вы наверняка уже догадались, это в тысячу раз дольше, чем миллиард, — то есть 31 с лишним тысяча лет. Примерно столько времени назад вымерли неандертальцы. Но это секунды. А вот через триллион лет случится нечто гораздо более интересное — в галактиках прекратят образовываться новые звезды. Триллион километров — такое расстояние свет в вакууме проходит чуть больше чем за месяц. А 42 триллиона километров — это расстояние до ближайшей к нам звезды (Проксимы Центавра). Если мы возьмем триллион бактерий (допустим, у нас как-то получится их собрать всех вместе), то они займут объем одного кубика сахара. Примерно столько бактерий содержится на теле человека. А число клеток в нем — несколько десятков триллионов. Во всех когда-либо отпечатанных книгах за всю историю книгопечатания около 100 триллионов букв. Вообще, кажется, что триллион это очень много. Но попробуем взять что-нибудь по-настоящему маленькое, — например атом. Горстку из триллиона атомов даже не увидеть невооруженным взглядом, вот насколько они малы. Давайте лучше увеличим что-нибудь в триллион раз. Например, электрон. Он будет размером с горошину. А вот кварки, увеличенные в триллион раз, все еще не будут видны. Кстати, вы же понимаете, что взять триллион штук чего-либо это совсем не то же самое, что увеличить это что-то в триллион раз?
Квадриллион = 1 000 000 000 000 000 = 10¹⁵
Четвертое число — «квадриллион» или 10 в 15-й степени. Это название уже не на слуху и редко кто пользуется им в обыденной жизни. Например, квадриллион долларов — это сумма неиспользуемая в практическом смысле. Даже не понятно, что может стоить так много. Разве что небольшая гора высотой метров в 200, состоящая из цельного куска платины (если бы такая существовала и если бы мы умудрились продать ее на рынке по текущему курсу). В теле человека (не только на коже, как в предыдущем абзаце) обитает до 1 квадриллиона бактерий, и их общий вес составляет около 2 килограмм. А еще на нашей планете живет примерно квадриллион муравьев (да, их гораздо больше, чем людей, — примерно в 100 тысяч раз).
Если пролететь квадриллион километров (а это примерно 100 световых лет), то можно посетить несколько ближайших к Земле звезд и вернуться обратно. Через 200 квадриллионов секунд Солнце перейдет в стадию красного гиганта. Помните кварки из нашего предыдущего абзаца? Давайте увеличим их в квадриллион раз. Размер самых больших из них будет равен примерно 1 миллиметру, а самые маленькие (так называемые «истинные» кварки) все еще не будут видны. И нейтрино, кстати, тоже видны не будут, хотя об их размерах мы можем судить только весьма приблизительно. А еще самые мощные современные компьютеры выдают несколько десятков квадриллионов операций в секунду (петафлопсов).
Квинтиллион = 1 000 000 000 000 000 000 = 10¹⁸
Наш пятый гость — «квинтиллион» или 10 в 18-й степени. Он в тысячу раз больше квадриллиона. Квинтиллион километров — это примерный диаметр нашей галактики, которая называется Млечный Путь. До нашей соседки — галактики Андромеды — 25 квинтиллионов (и, кстати, это расстояние сокращается на 300 километров каждую секунду, потому что мы сближаемся именно с такой скоростью). Квинтиллион секунд — это время в 2 раза большее, чем то, которое прошло от Большого Взрыва и до сегодняшнего момента. Для того чтобы вычерпать все мировые океаны, достаточно 5-6 квинтиллионов стаканов. А если мы возьмем квинтиллион молекул чернил, то сможем написать ими какое-нибудь одно, не очень большое, слово. 25-30 квинтиллионов молекул содержится в 1 куб.см воздуха при нормальной температуре и давлении (в основном, это молекулы азота – 78% и кислорода – 21%). Масса всей атмосферы Земли — около 5 квинтиллионов килограмм. Число возможных комбинаций кубика Рубика — 43 квинтиллиона с лишним. Для размещения квинтиллиона бактерий нам потребуется достаточно большая бочка, впрочем всего одна. Компьютер с производительностью квинтиллион операций в секунду должен появиться через пару лет. И наконец, если мы хотим кинуть монету таким образом, чтобы она упала на ребро 5 раз подряд, то в среднем нам придется сделать для этого около 8 квинтиллионов попыток (хотя, конечно, это сильно зависит от того, что это за монета и как именно мы ее кидаем).
Секстиллион = 1 000 000 000 000 000 000 000 = 10²¹
Двигаемся дальше. « Секстиллион» или 10 в 21-й степени. Столько атомов содержится в небольшом шарике из алюминия, диаметром в пару миллиметров.
За один вдох мы захватываем около 10 секстиллионов молекул воздуха (причем среди них почти наверняка будут несколько молекул, которые были выдохнуты какой-нибудь выдающейся исторической личностью, например Элвисом Пресли). Вес гидросферы Земли – полтора секстиллиона килограмм, а Луны около 70 секстиллионов. Увеличив в секстиллион раз нейтрино, мы наконец-то сможем его разглядеть, хотя он будет совсем крошечным даже при таком фантастическом приближении. Количество песчинок на всех пляжах Земли — несколько секстиллионов, хотя это сильно зависит от того, как и что именно мы считаем. При этом, звезд во Вселенной даже еще больше (об этом чуть ниже). А размер видимой ее части — примерно 130 секстиллионов километров. Разумеется, такие расстояния никто в километрах не меряет, а использует для этого куда более подходящие световые годы и парсеки.
Септиллион = 1 000 000 000 000 000 000 000 000 = 10²⁴
Наш следующий на очереди гигант это «септиллион» или 10 в 24-й степени. Находить примеры из жизни становится всё труднее. 6 септиллионов килограмм весит наша Земля. Количество звезд в обозримой Вселенной — септиллион или совсем немного меньше.
Знаменитое число Авогадро, обозначающее количество молекул в одном моле вещества, составляет почти септиллион (более точное значение: 6 на 10²³ степени). 10 септиллионов молекул воды поместится в одном стакане. А если выложить в ряд 50 септиллионов маковых зерен, то такая цепочка протянется до Туманности Андромеды.
Октиллион = 1 000 000 000 000 000 000 000 000 000 = 10²⁷
10 в 27-й степени это «октиллион». Октиллион горошин займут такой же объем как планета Земля. Еще это число интересно тем, что если взять 5-10 октиллионов атомов, то из них можно составить человеческое тело.
Нониллион = 1 000 000 000 000 000 000 000 000 000 000 = 10³⁰
И, наконец, 10 в 30-й степени — это «нониллион». Приходится обращаться к примерам из чистой фантастики. Нониллион долларов стоили бы 5 планет размером с Землю, если бы они состояли из чистой платины. Для того, чтобы разглядеть невооруженным взглядом базовые составляющие материи (предполагается, что это одномерные квантовые струны), их придется увеличить в 100 нониллионов раз. Достаточно сказать, что толщина человеческого волоса при таком увеличении превысит размеры обозримой Вселенной. Масса Солнца — 2 нониллиона килограмм, а всей Солнечной системы лишь ненамного больше.
Время жизни протона – минимум нониллион лет (а скорее всего, намного больше). В 1 килограмме вещества примерно 1 нониллион электронов. А из нониллиона молекул можно составить целого слона.
10 в 33-й степени называется дециллион, но дальше мы обойдемся уже без обозначений. Масса Галактики – 2 на 10⁴¹ килограмм. Число возможных комбинаций в колоде из 36 карт – 3.72 на 10⁴¹, а позиций в шахматах – 4.6 на 10⁴². Энергия взрыва сверхновой звезды – 10⁴² джоуля. Количество молекул воздуха на Земле – 10⁴⁴, а количество атомов, составляющих всю нашу планету, – 10⁵⁰. Масса всей Вселенной – 1.7 на 10⁵³ килограмм. Типичный белый карлик состоит из 10⁵⁷ частиц. Если поделить самое большое из реально существующих расстояний (радиус Вселенной) на самое малое (длину Планка), то получится 4.6 на 10⁶¹. 10⁶⁶ лет – время испарения черной дыры с массой Солнца. Число атомов в Галактике – 10⁶⁷, а во всей Вселенной – 10⁷⁷. При этом, элементарных частиц во Вселенной – 10⁸⁰, а число фотонов и того больше, – 10⁹⁰. Число 10¹⁰⁰ имеет красивое название «Гугол». Через Гугол лет испарятся последние черные дыры и наша Вселенная погрузится во тьму (наверное). Количество неповторяющихся шахматных партий (так называемое Число Шеннона) равно минимум 10¹¹⁸.
Если набить всю обозримую Вселенную «под завязку» протонами, то их в нее поместится около 10¹²². А если взять для той же самой цели самый малый из известных науке объемов (планковский объем), то получится 10¹⁸⁵. Поистине ошеломляюще. Наверное, здесь заканчивается теоретическая физика и начинается чистая математика — царица всех наук.
Да, есть числа и гораздо большие, но они уже не имеют применения в реальном мире. Одним из самых больших чисел (а до недавнего времени — самым большим) из тех, которые использовались в доказательствах теорем, является число Грэма, введенное математиком Рональдом Грэмом. Оно настолько велико, что для его обозначения пришлось использовать совершенно новую нотацию, то есть систему записи чисел. Единственное, что можно сказать о числе Грэма, так это то, что каким бы вы его не представили, на самом деле оно гораздо, гораздо больше. Заканчивается оно на 387, а вот с какой цифры начинается, не знает никто и не узнает, судя по всему, никогда.
Поскольку в данном тексте я обращался к очень большим числам, то наверняка допускал неточности, хотя и старался по возможности их не делать, проверяя то, что пишу, во внушающих доверие источниках. Конечно, если мы говорим, например, о квинтиллионе частиц, то ошибка в 10 раз будет почти незаметна (10¹⁸ и 10¹⁹ на глаз различаются не слишком сильно). Если же вы считаете, что где-то я допустил более грубую ошибку, то пожалуйста напишите об этом.