основы квантового компьютера Урок цифры ответы

Принцип работы квантового компьютера

Квантовые компьютеры часто понимают неправильно из-за того, что в их названии есть слово «компьютер». Когда люди слышат слово «компьютер», они думают о ноутбуках или телефонах, но дело в том, что эти устройства и даже самые большие суперкомпьютеры в мире работают по одной и той же фундаментальной схеме. Однако, квантовые компьютеры имеют фундаментальные отличия и их нельзя называть компьютерами в привычном понимании этого слова.

Принцип работы квантового компьютера

Квантовые вычислительные системы — устройства, использующие явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Такие устройства оперируют кубитами (квантовыми битами), которые могут одновременно принимать значение и логического ноля, и логической единицы. Поэтому с ростом количества использующихся кубитов число обрабатываемых одновременно значений увеличивается в геометрической прогрессии.

В квантовом компьютере основным элементом является кубит – квантовый бит. В отличие от обычного бита он находится в состоянии квантовой суперпозиции, то есть имеет значение и 0, и 1, и любые их сочетания в любой момент времени. Если в системе находится несколько кубитов, то изменение одного также влечет за собой изменение всех остальных кубитов.

Кубит

Это позволяет одновременно просчитывать все возможные варианты. Обычный процессор с его бинарными вычислениями, фактически просчитывает варианты последовательно. Сначала один сценарий, потом другой, потом третий и т.д. Чтобы ускорить, начали применять многопоточность, запуская вычисления параллельно, предвыборку, чтобы предугадывать возможные варианты ветвления и просчитывать их заранее. В квантовом компьютере это все делается параллельно.

Отличается и принцип вычислений. В каком-то смысле квантовый компьютер уже содержит все возможные варианты решения задачи, нашей задачей только является считать состояние кубитов и… выбрать из них правильный вариант. И вот тут начинаются сложности. В этом и заключается принцип работы квантового компьютера.

Про урокцифры:  АРТ ЯНДЕКС

https://youtube.com/watch?v=Uilas2vGsCg%3Fstart%3D8

Прогресс развития квантовых вычислений за последние 20 лет:

Инфографика развития квантовых вычислений за последние 20 лет

Пример работы квантовых вычислений

Для того, чтобы понять потенциал квантовых вычислений, давайте рассмотрим простую задачку: пройти лабиринт.

Основы квантового компьютера урок цифры ответы

Единственный способ решения такой задачи на классическом компьютере — перебор всех возможных вариантов, череда успехов и неудач. Однако квантовый компьютер, используя всю мощь квантовой физики, проверяет все варианты одновременно и дает правильное решение намного быстрее.

Основы квантового компьютера урок цифры ответы

Казалось бы, можно немного подождать и классический компьютер решит задачу, зачем строить сложную квантовую машину? Все бы ничего, но только человечество постоянно сталкивается с задачами, которые займут тысячи, миллионы, миллиарды лет вычислений на самых мощных суперкомпьютерах мира. Время — непозволительная роскошь для человека, нам нужны решения этих задач уже сегодня. Давайте попробуем разобраться где конкретно сила квантового компьютера может нам помочь?

Для решения каких задач может использоваться квантовый компьютер?

Квантовый компьютер не способен полностью заменить классический, да это и не нужно. Обычный компьютер справляется со множеством задач, но, все таки, существует класс проблем, которые квантовая машина способна решить за час, в том время как классическим компьютерам понадобится время жизни Вселенной.

Известные на сегодняшний день задачи такого типа, можно разделить на 4 группы.

Задачи с преобразованием Фурье

Задачи с преобразованием Фурье

Это, в основном, задачи криптографии и шифрования: тот самый алгоритм Шора, который может позволить взломать RSA и Биткоин. Происходит это потому, что квантовое преобразование Фурье невероятно быстрое и, если найти ему правильное применение, то оно даёт экспоненциальное ускорение.

Задачи оптимизации

Задачи оптимизации

Сюда входят комбинаторные проблемы, которые решаются лишь перебором всех возможных вариантов, например, лабиринт, который был рассмотрен выше. Другой нашумевший квантовый алгоритм, алгоритм Гровера, позволяет решать такие задачи быстрее обычного перебора, однако, не дает такого сильного ускорения как алгоритм Шора. Комбинаторные задачи постоянно возникают в сфере логистики, оптимизации и экономики.

Квантовое машинное обучение

Машинное обучение

Третий квантовый алгоритм, дающий заметное ускорение — это алгоритм HHL. Он способен решать систему линейных уравнений экспоненциально быстрее любого классического алгоритма; как известно, линейные уравнения возникают повсюду, например, в задачах машинного обучения.

Quantum-assisted machine learning — это одно из самых полезных применений квантовых компьютеров. Да и вообще использование квантовой физики в задачах искусственного интеллекта это классно: можно, к примеру, использовать квантовые выборки, которые находятся в состоянии суперпозиции нескольких классических выборок.

Симуляции квантовой системы

Симуляция сложной квантовой системы

Это самое естественное применение квантовых компьютеров. Такой подход предложил ещё Фейнман: чтобы смоделировать очень сложную квантовую систему вам нужна другая сложная квантовая система, о которой вы все знаете и умеете ей управлять.

Поэтому полноценный квантовый компьютер поможет создать новые материалы, новые лекарства, высокотемпературные сверхпроводники. Это задачи, где надо хитрым образом организовать взаимодействие атомов, но чтобы понять как именно это сделать классическим компьютерам потребуется триллионы лет вычислений, в то время как большим квантовым — несколько часов.

Зачем нужны квантовые компьютеры?

Одно из самых важных применений квантового компьютера сейчас — разложение на простые числа. Дело в том, что вся современная криптография основана на том, что никто не сможет быстро разложить число из 30–40 знаков (или больше) на простые множители. На обычном компьютере на это уйдёт миллиарды лет. Квантовый компьютер сможет это сделать примерно за 18 секунд.

Это означает, что тайн больше не будет, потому что любые алгоритмы шифрования можно будет сразу взломать и получить доступ к чему угодно. Это касается всего — от банковских переводов до сообщений в мессенджере. Возможно, наступит интересный момент, когда обычное шифрование перестанет работать, а квантовое шифрование ещё не изобретут.

Как устроен квантовый компьютер

Ещё квантовые компьютеры отлично подходят для моделирования сложных ситуаций, например, расчёта физических свойств новых элементов на молекулярном уровне. Это, возможно, позволит быстрее находить новые лекарства или решать сложные ресурсоёмкие задачи.

Сейчас квантовые компьютеры всего этого не умеют — они слишком сложные в производстве и очень нестабильные в работе. Максимум, что можно пока сделать, — заточить квантовый компьютер под единственный алгоритм, чтобы получить на нём колоссальный выигрыш в производительности. Как раз для этих целей их и закупают крупнейшие компании — чтобы быстрее решать одну-две самые важные для себя задачи.

Квантовые алгоритмы

(к оглавлению)

Основы квантового компьютера урок цифры ответы

Как уже говорилось, обычные алгоритмы, основанные на бинарной логике, неприменимы к квантовому компьютеру, использующему квантовую логику (квантовые вентили). Для него пришлось придумывать новые, в полной мере использующие потенциал, заложенный в квантовую природу вычислений.

Наиболее известные на сегодняшний день алгоритмы это:

  • Алгоритм Шора
  • Алгоритм Гровера
  • Алгоритм Дойча — Йожи

В отличие от классических, квантовые компьютеры не универсальны.
До сих пор найдено лишь небольшое число квантовых алгоритмов.(С)

Спасибо oxoron за ссылку на Quantum Algorithm Zoo, место, где, по уверениям автора (“Stephen Jordan”), собраны и продолжают собираться лучшие представители квантово-алгоритмического мира.

В данной статье мы не будем подробно разбирать квантовые алгоритмы, в Сети много прекрасных материалов на любой уровень сложности, но кратко пробежаться по трем самым известным все-таки надо.

Как работает квантовый компьютер

Он работает иначе — по интуитивно непонятной логике. Как и обычный, он проводит вычисления, но в его основе лежат законы квантовой механики.

Классический мир и классическая механика детерминистичны. Это значит, что значение любого регистра памяти в компьютере всегда 0 или 1, а тарелка всегда либо целая, либо разбита.

В квантово-механической системе нет такой четкости, а есть вероятность, которая определяет ее суть. Правильный вопрос здесь — какова вероятность, что тарелки разбились или целы, какова вероятность, что значения регистра 0 или 1?

Основы квантового компьютера урок цифры ответы

Вероятность — первое важное понятие в квантовой механике. С точки зрения квантовой механики «тарелки Шредингера» одновременно и целые, и разбитые. Есть некая вероятность того, что они целые, и некоторая вероятность, что разбитые. Эта неопределенность и отражает реальный физический мир.

На классическом уровне неопределенность маскирует наше незнание. Например, когда мы покупаем лотерейный билет «Спортлото», для нас появляется вероятность выиграть, потому что мы не знаем выигрышный номер.

Для классической физики лотерея — это не вероятностный процесс. Всегда можно описать движение руки, которая запускает барабан, скорость и траекторию каждого шарика. Теоретически, можно угадать выигрышный номер (хотя практически — сложно). В квантовой механике даже теоретически нельзя угадать, что произойдет в следующую секунду. Мы можем только предсказать это с точки зрения вероятности.

Второе понятие — принцип суперпозиции. Обычный бит находится только в значениях 0 или 1. В квантовых компьютерах нет обычных битов, а есть квантовые — кубиты. Квантовый бит находится в состоянии 0 или 1 с какой-то вероятностью. Кубит может находиться одновременно в этих состояниях, притом в разных комбинациях — в суперпозиции этих состояний.

Когда система (кубит) находится одновременно в состоянии 0 или 1, можно говорить только о вероятностях. Если состояний много, система одновременно находится во всех возможных состояниях, но с меньшей вероятностью для каждого. Это принципиально важно.

В классической программе в каждый конкретный момент времени каждая строка программы работает с определенной ячейкой памяти. В квантовой механике можно работать со всеми ячейками памяти одновременно.

«Память» квантового компьютера

В чем основная разница между квантовой и классической памятью компьютера? В обычном компьютере мы записываем числа в двоичном коде. Например, число 8 в двоичной системе выглядит как 00001000, и для его записи достаточно 4 битов.

В квантовых компьютерах кубиты находятся в состоянии 0 или 1 с какой-то вероятностью. Вероятность — это число. Чтобы записать одно число с бесконечной точностью, нужно бесконечное количество битов. Поэтому, в теории, один кубит — это физическая система с бесконечным количеством памяти.

На практике у методов измерения ограниченная точность. Будем считать, что она соответствует обычной машинной (float). Получается, что кубит содержит два числа: вероятности, что кубит в состоянии 0 и в состоянии 1.

Примечание: для упрощения мы игнорируем, что сумма вероятностей кубита в состоянии 0 и 1 должна равняться единице. Основной вывод не зависит от упрощения.

Один кубит соответствует двум вещественным числам (float). Это большой выигрыш, потому что для двух вещественных чисел на обычном компьютере нужно два машинных слова — 128 обычных битов, а мы обошлись одним квантовым. Может показаться, что квантовый компьютер в 128 раз лучше обычного. Но это не так.

Квантовый компьютер экспоненциально лучше обычного.

Один кубит это 2 вещественных числа. Два кубита — 4 вещественных числа. Но восемь кубитов это 256 потенциальных конфигураций восьми нулей и единиц — два в восьмой степени.

Для одного кубита выигрыш в 128 раз, а для восьми кубитов он существенно больше — 256*128. Система n кубитов в памяти эквивалентна вещественных чисел.

Емкость квантовой памяти растет в геометрической прогрессии.

Память обычного ноутбука эквивалентна 15 кубитам, 40 кубитов равны памяти самых мощных вычислительных центров, а 50-60 кубитов превышают суммарную память всех вычислительных центров всего мира.

Три-четыре кубита эквивалентны увеличению обычной классической памяти в 10-20 раз. Квантовая память значительно более емкая, чем любые другие классические способы записи информации. В этом главный потенциал квантовых вычислений.

Но экспоненциальный рост емкости квантовой памяти вызывает проблему размерности. Из-за проклятия размерности сложно описать такую квантовую систему на классическом компьютере — требуется все больше и больше памяти.

Какие задачи может решить квантовый компьютер

Если квантовый мир работает на уровне неопределенности, как вообще возможно что-то посчитать? У квантовой механики вероятностная природа, а нам нужен точный ответ. Как все будет работать, если нужно просто перемножить два числа?

Объясню на примере задач класса NP, то есть задач разрешимости, решение которых невозможно найти за полиномиальное время — во всяком случае, в предположении . Однако, правильность решения за полиномиальное время проверить можно. Это похоже на взлом закрытого замка: мы не умеем пользоваться отмычками, но можем быстро проверить любой ключ, если он есть.

Благодаря принципу суперпозиции квантовая система находится сразу во всех состояниях и ищет лучший вариант. Однозначного ответа система не дает, но повышает вероятность того, что лучший вариант является решением. Когда система остановится на каком-то решении, мы сможем довольно быстро проверить его на правильность.

Если окажется, что ответ неверен, запустим квантовый компьютер еще раз. Вероятность получения правильного ответа больше 50%, а часто гораздо больше. Значит, за 2-4 запуска квантового алгоритма мы получим правильный ответ.

У нас не будет однозначного ответа, а только вероятность получить правильный ответ. Но эта вероятность весьма высока. Фактически, мы гадаем, но не на кофейной гуще, а на научной. За несколько итераций мы найдем ответ и проверим, что он правильный.

Параметры квантового компьютера

У классического компьютера два параметра качества: объем памяти и количество операций. С обычным компьютером мы по умолчанию предполагаем, что у нас есть доступ ко всем ячейкам памяти для записи и чтения.

В квантовом случае есть три параметра.

Объем памяти или количество кубит. Чем больше памяти, тем лучше? Для квантового компьютера нет — когда мы увеличиваем количество кубит, растет сложность квантовой системы. Систему становится тяжело поддерживать в изолированном состоянии.

Время работы или количество последовательных операций (когерентность). Систему обязательно требуется поддерживать в изолированном состоянии — в физике это называется когерентность. Если позволить квантовой системе взаимодействовать с окружающей средой, то это разрушит состояние ячеек квантовой памяти. Вместо нулей и единиц будет просто шум.

Мы пытаемся поддерживать систему изолированной как можно дольше. Но чем больше квантовых операций проводим, тем больше времени на них уходит, а значит все сложнее поддерживать систему в изолированном состоянии.

Примечание: здесь количество операций не в секунду, а за все время работы системы.

Возникает парадокс: чем больше кубитов, тем меньше операций доступно. Поэтому время, в течении которого можно держать систему изолированной и произвести некоторое количество операций, это важный параметр.

Представьте обычный компьютер, в котором нет охлаждения. Пока компьютер не перегреется, у него есть время что-то посчитать, а потом он отключается. Примерно то же самое происходит в квантовом компьютере. В нем нет «вентилятора»: чем больше работает, тем больше нагревается, пока не разрушится. Поэтому есть ограничение на количество операций.

Универсальность. В классическом компьютере доступны любые операции: умножение, деление, вычитание. Теоретически, в квантовом тоже. Но на практике, существенно проще проводить операции только с соседними кубитами, которые расположены на прямой, в прямоугольном или квадратном массиве. Для работы со всеми кубитами требуется очень сложная архитектура — на практике пока так не умеют.

Основы квантового компьютера урок цифры ответы

Все три направления конфликтуют друг с другом. Мы можем улучшить одно, но это произойдет за счет ухудшения двух других. Сейчас, когда технология в зачаточном состоянии, можно выделить несколько прототипных платформ, и каждая из них пытается улучшить показатели одного направления за счет двух других.

Архитектура процессора

(к оглавлению)

Основы квантового компьютера урок цифры ответы

В теории мы строим и оперируем схемами из десятков запутанных кубитов, в реальности же все сложнее. Все существующие квантовые чипы (процессоры) построены таким образом, что обеспечивают безболезненное запутывание одного кубита только со своими соседями, которых не больше шести.

Если же нам надо запутать 1-й кубит, скажем, с 12-м, то нам придется строить цепочку дополнительных квантовых операций, задействовать дополнительные кубиты и прочее, что увеличивает общий уровень ошибок. Да, и не забывайте про время декогеренции, возможно к тому моменту, когда вы закончите связывать кубиты в нужную вам схему, время закончится и вся схема превратится в симпатичный генератор белого шума.

Также не забывайте, что архитектура у всех квантовых процессоров разная, и программу, написанную в эмуляторе в режиме “связность всех со всеми” нужно будет “перекомпилировать” в архитектуру конкретного чипа. Есть даже специальные программы оптимизаторы для выполнения этой операции.

Максимальная связность и максимальное количество кубитов для тех же топовых чипов:

И, для сравнения, таблица с данными предыдущего поколения процессоров. Сравните количество кубитов, время декогеренции и процент ошибок с тем, что мы имеем сейчас у нового поколения. Все-таки прогресс потихоньку, но движется.

Основы квантового компьютера урок цифры ответы

Итак:

  • Чтобы на реальном процессоре запутать кубит 0 с, например, 15-м может потребоваться несколько десятков дополнительных операций

Посмотри видеолекцию

Основы квантового компьютера урок цифры ответы

`

Квантовый мир: как устроен квантовый компьютер

Квантовая физика – это мир чудес, настоящая terra incognita. Здесь кот перемещается быстрее скорости света, а лампочка включена и выключена одновременно. Однако ученые узнали ее законы и даже смогли поставить их себе на службу, создав квантовый компьютер! Как он устроен? Почему крупные компании вроде Google и целые государства наперегонки хотят создать свои собственные квантовые компьютеры? Кто создает его в России? Как изменится наша жизнь после второй квантовой революции? И когда была первая?
Смотрите ролик и узнаете!

Скачать видео

Чем квантовый компьютер отличается от обычного?

Квантовые вычисления и квантовая связь — сами эти понятия были изобретены буквально 30 лет назад, и первые работы ученых даже не брали в научные журналы: говорили, что фантастика, а не наука. Сегодня же квантовые системы не только существуют, но и продаются за деньги, создавая и решая новые проблемы безопасности, в основном в сфере криптографии.

Квантовые компьютеры – это машины, основанные на уникальном поведении, описываемом квантовой механикой, и совершенно отличающимся от поведения классических систем. Одно из таких отличий – способность частицы или группы частиц в некотором отношении находиться только в двух дискретных квантовых базовых состояниях – назовем их 0 и 1.

Квантовый компьютер непригоден для большинства повседневных дел, зато способен быстро решить математические задачи, на которых основана современная криптография.

Принципиальным отличием квантового компьютера от обычного является то, что его операционная единица — кубит (квантовый бит) может находиться в состоянии неопределенности, или, если угодно, в нескольких состояниях одновременно. Звучит запутанно, еще сложнее на практике, но как показали годы исследований, это работает.

Приведем ключевые различия квантового и обычного компьютера:

 Обычный компьютерКвантовый компьютер

Логика

0 / 1`a|0> + b|1>, a^2+b^2=1`

Физика

Полупроводниковый транзисторКвантовый объект

Носитель инф.

Уровни напряженияПоляризация, спин,…

Операции

NOT, AND, OR, XOR над битамиВентили: CNOT, Адамара,…

Взаимосвязь

Полупроводниковый чипЗапутанность между собой

Алгоритмы

Стандартные (см. Кнут)Специальные (Шор, Гровер)

Принцип

Цифровой, детерминированныйАналоговый, вероятностный

Квантовый компьютер сильно отличается от классического и вряд ли пригоден для игры в «Тетрис», зато он неизмеримо быстрее обычного решает вероятностные и оптимизационные задачи.

Среди вещей, которые можно радикально ускорить квантовыми вычислениями, — оптимизация маршрутов транспорта, секвенирование ДНК, предсказание биржевых котировок и подбор криптографических ключей. Правда, ответ тоже всегда будет вероятностным, даже считать его с компьютера является сложной проблемой, но, сделав несколько довольно быстрых прогонов одной и той же задачи, можно прийти к одному-единственному, правильному ответу: в интересующем нас случае — ключу шифрования.

https://youtube.com/watch?v=S2idLWESSVI%3Fstart%3D7

Биты и кубиты

Работа классического компьютера основана на понятии «бит». Это единица измерения информации, которая может принимать одно из двух значений: либо 0, либо 1. Разберём принцип его действия на понятном примере.

Любой компьютер оснащён транзистором – электронным компонентом, который управляет высоким током с помощью низкого. Давайте представим, что транзистор – это кран на водопроводной трубе. Если его включить – вода начнёт литься, если его выключить – вода перестанет бежать.

Только вместо воды в транзисторе электричество. Причём его включение и выключение полностью зависит от электричества. То есть система представляет собой множество кранов, соединённых между собой таким образом, что включённая вода из одного крана может включать либо выключать воду из другого.

Транзисторы в компьютере устроены таким образом, что их включение и выключение позволяет осуществлять математические вычисления.

Такие вычисления могут производиться с высокой скоростью благодаря тому, что транзисторов огромное количество (несколько миллиардов), а скорость их работы приближается к значению скорости света.

Всё, что обычный пользователь видит на экране персонального компьютера, является результатом подобных вычислений. Папки, изображения, документы – всё это представляет собой производные от простого математического сложения и вычитания, то есть включения и выключения тех самых кранов с электрическим током с высочайшей скоростью.

Работа классического компьютера
Работа классического компьютера

Транзистор – это и есть бит. Он может иметь значение 0 либо 1, то есть «выключен» либо «включен». Бит – это минимальная единица измерения информации в классическом компьютере. Бит может располагаться где угодно: в ядре процессора, на чипе оперативной памяти, на жёстком диске. Бит представляет собой некое физическое пространство, которое находится либо во включенном, либо в выключенном состоянии.

Определить состояние бита можно по наличию либо отсутствию в нём заряда электрического тока. То есть переходных состояний у бита нет: либо он включен (в нём находится заряд), либо выключен (заряд в нём отсутствует).

pdf иконка

Топ-30 самых востребованных и высокооплачиваемых профессий 2022

Поможет разобраться в актуальной ситуации на рынке труда

doc иконка

Подборка 50+ ресурсов об IT-сфере

Только лучшие телеграм-каналы, каналы Youtube, подкасты, форумы и многое другое для того, чтобы узнавать новое про IT

pdf иконка

ТОП 50+ сервисов и приложений от Geekbrains

Безопасные и надежные программы для работы в наши дни

Уже скачали 14803

Квантовый компьютер в качестве единицы измерения информации использует кубиты – квантовые микрочастицы, которые помимо стандартных значений 0 и 1 могут принимать также значения между 0 и 1.

Как работает квантовый компьютер

Квантовые компьютеры для вычислений используют такие свойства квантовых систем, как суперпозиция и запутанность. В суперпозиции квантовые частицы представляют собой комбинацию всех возможных состояний, пока не произойдет их наблюдение и измерение. Запутанные кубиты образуют единую систему и влияют друг на друга. Измерив состояние одного кубита, возможно сделать вывод об остальных. С увеличением числа запутанных кубитов экспоненциально растет способность квантовых компьютеров обрабатывать информацию.

Биты и кубиты

Биты и кубиты

(Фото: Журнал Яндекс Практикума)

Базовым элементом, выполняющим логические операции в классическом компьютере, является вентиль. Для работы квантового компьютера используются квантовые вентили, собранные из кубитов. Они бывают однокубитные и двухкубитные. Также существуют универсальные наборы вентилей, с помощью которых можно выполнить любое квантовое вычисление

Кроме того, квантовые компьютеры не могут работать со стандартным софтом вроде Windows. Для них требуется своя операционная система и приложения. Некоторые технологические гиганты уже предлагают организациям опцию квантовых вычислений в облаке. Облачные квантовые вычисления обеспечивают прямой доступ к эмуляторам, симуляторам и квантовым процессорам.

Квантовые вычисления в облаке

Квантовые вычисления в облаке

(Фото: Medium)

Поставщики также предоставляют платформы разработки и документацию для языков и инструментов вычислений. IBM уже представила программную платформу для квантовых вычислений с открытым исходным кодом под названием Qiskit. А Microsoft выпустила инструмент бесплатного разработчика вычислительной техники на языке Q# и симулятор квантовых вычислений. Над разработкой ПО для квантовых компьютеров работают также 1QBit, Cambridge Quantum Computing, QSimulate, Rahko, Zapata и другие компании.

Платформа Orquestra от Zapata предлагает набор вычислительных методов для квантовых компьютеров

Для работы квантовых компьютеров требуются квантовые алгоритмы. Из наиболее известных квантовых алгоритмов можно выделить три:

  • Шора (разложения числа на простые множители)
  • Гровера (решение задачи перебора, быстрый поиск в неупорядоченной базе данных)
  • Дойча-Йожи (ответ на вопрос, постоянная или сбалансированная функция)

Квантовый компьютер работает на вероятностном принципе. Его результатом работы является распределение вероятностей возможных ответов, наиболее вероятный ответ обычно является лучшим решением.

Квантовые кубиты в физической реализации бывают нескольких типов: сверхпроводниковые, зарядовые, ионные ловушки, квантовые точки и другие.

Настоящий уровень развития технологий позволяет создать большое количество кубитов, сложность возникает с устойчивостью такой системы. Как и все квантовые системы, кубиты легко теряют заданное квантовое состояние при взаимодействии с окружением (происходит их декогеренция). При этом в работе квантового компьютера растет количество ошибок вычислений. Чтобы обеспечить ее устойчивость при проведении вычислений, требуется оградить систему от любого фонового шума, например, в случае сверхпроводниковых систем, охлаждая их до температур, близких к нулю по Кельвину (-273,1 °C). Разработчики используют сверхтекучие жидкости, чтобы добиться такого охлаждения.

Фото:НИТУ "МИСиС"

Как объяснил Руслан Юнусов, исторически сверхпроводники считались наиболее перспективным направлением благодаря хорошей масштабируемости, стабильности во времени, контроле параметров и относительной легкости управления ими. Именно на этой платформе построены квантовые компьютеры IBM, Google и Rigetti. Однако, по его словам, в последнее время все большую популярность приобретают альтернативные квантовые платформы: ионы, демонстрирующие высочайшие на сегодняшний день показатели стабильности и точности операций (Honeywell, IonQ), и фотоны, преимуществами которых являются малый размер фотонного процессора и возможность работы при комнатных температурах (Xanadu, PsiQuantum, Quix).

Кроме того, развиваются новые концепции: системы на поляритонах или магнонах, системы бозе-эйнштейновских конденсатов, когерентные машины Изинга, когерентные CMOS-архитектуры. Так, в поляритонной архитектуре битом служит поляритон — квазичастица, сочетающая свойства света и вещества. Теоретически, поляритонный квантовый компьютер сможет работать при комнатной температуре, что снизит его стоимость и упростит изготовление. В настоящее время изучением поляритонных структур занимается Сколтех.

Направления развития

(к оглавлению)

Основы квантового компьютера урок цифры ответы

На текущий момент (могу ошибаться, поправьте) основные усилия (и более-менее значимые результаты) у всех ведущих игроков сосредоточены на двух направлениях:

  • Специализированные квантовые компьютеры, которые направлены на решение одной конкретной специфической задачи, например, задачи оптимизации. Примером продукта являются квантовые компьютеры D-Wave.
  • Универсальные квантовые компьютеры — которые способны реализовать произвольные квантовые алгоритмы (Шора, Гровера, и т.д.). Реализации от IBM, Google.

Прочие же вектора развития, которые дает нам квантовая физика, такие как:

  • квантовые сенсоры
  • квантовая сеть как основа для квантовой криптографии
  • и многое другое

безусловно тоже в списке направлений для исследований, но каких-то более-менее значимых результатов в настоящее время вроде как еще нет.

Дополнительно можно почитать дорожную карту развития квантовых технологий, ну и гуглите “развитие квантовых технологий”, например, вот, вот и вот.

Алгоритм Гровера

(к оглавлению)

Алгоритм Гровера — квантовый алгоритм решения задачи перебора, то есть нахождения решения уравнения F(X) = 1, где F — есть булева функция от n переменных. Был предложен американским математиком Ловом Гровером в 1996 году.

Алгоритм Гровера может быть использован для нахождения медианы и среднего арифметического числового ряда. Кроме того, он может применяться для решения NP-полных задач путем исчерпывающего поиска среди множества возможных решений. Это может повлечь значительный прирост скорости по сравнению с классическими алгоритмами, хотя и не предоставляя «полиномиального решения» в общем виде.(С)

Подробнее можно почитать вот тут, или тут. Еще вот тут есть хорошее объяснение алгоритма на примере ящиков и мяча, но, к сожалению, по независящим ни от кого причинам, данный сайт у меня из России не открывается. Если у вас этот сайт тоже заблокирован, то вот краткая выжимка:

Алгоритм Гровера. Представьте, что у вас имеется N штук пронумерованных закрытых коробок. Они все пустые кроме одной, в которой находится мячик. Ваша задача: узнать номер коробки, в которой находится мячик (этот неизвестный номер часто обозначают буквой w).

Как решать эту задачу? Самым тупым способом, по очереди открывать коробки, и рано или поздно вы наткнетесь на коробку с мячиком. А сколько в среднем коробок нужно проверить до того, как будет обнаружена коробка с мячиком? В среднем нужно открыть примерно половину коробок N/2. Главное здесь то, что если мы увеличим число коробок в 100 раз, то в те же 100 раз увеличится и среднее число коробок, которые нужно открыть до того, как будет найдена коробка с мячиком.

Теперь сделаем ещё одно уточнение. Пусть мы не сами открываем коробки руками и проверяем наличие мячика в каждой, а имеется некий посредник, назовем его Оракул (Oracle). Мы говорим Оракулу — «проверь коробку номер 732», и Оракул честно проверяет и отвечает «в коробке номер 732 мячика нет». Теперь вместо слов о том, сколько коробок нам нужно в среднем открыть, мы говорим «сколько раз в среднем мы должны обратиться к Оракулу для того, чтобы найти номер коробки с мячиком»

Оказывается, что если перевести эту задачу с коробками, мячиком и Оракулом на квантовый язык, то выходит замечательный результат: для поиска номера коробки с мячиком среди N коробок нам нужно потревожить Оракула всего примерно SQRT(N) раз!

То есть сложность задачи перебора используя алгоритм Гровера снижается в квадратный корень раз.

Сравнение квантового компьютера и обычного

(к оглавлению)

Основы квантового компьютера урок цифры ответы

Давайте теперь сравним обычный компьютер и квантовый.

Логический уровень
Основы квантового компьютера урок цифры ответы

В обычном компьютере это бит. Хорошо нам знакомый насквозь детерминированный бит. Может принимать значения либо 0 либо 1. Он прекрасно справляется с ролью логической единицы для обычного компьютера, но совершенно не подходит для описания состояния квантового объекта, который, как мы уже говорили, в дикой природе находится в суперпозиции своих граничных состояний.

Для этого придумали кубит. В своих граничных состояниях он реализует похожие на 0 и 1 состояния |0> и |1>, а в суперпозиции представляет собой вероятностное распределение над своими граничными состояниями |0> и |1>:

 a|0> + b|1>, такое, что a^2+b^2=1

a и b при этом представляют собой амплитуды вероятностей, а квадраты их модулей — собственно вероятности получить именно такие значения граничных состояний |0> и |1>, если схлопнуть кубит измерением прямо сейчас.

Физический уровень

На текущем технологическом уровне развития физической реализацией бита для обычного компьютера выступает полупроводниковый транзистор, для квантового, как мы уже говорили, любой квантовый объект. В следующем разделе мы поговорим о том, что сейчас используется в качестве физических носителей кубитов.

Носитель информации

Для обычного компьютера это электрический ток — уровни напряжения, наличие или отсутствие тока, и т.д., для квантового — то самое состояние квантового объекта (направление поляризации, спин, и т.д.), которое может находится в состоянии суперпозиции.

Операции

Для реализации логических схем на обычном компьютере используются всем нам хорошо известные логические операции, для операций над кубитами пришлось придумывать совершенно иную систему операций, называемую квантовыми вентилями. Вентили бывают однокубитные и двухкубитные, в зависимости от того, над сколькими кубитами производится преобразование.

Примеры квантовых вентилей:

Есть понятие универсального набора вентилей, которых достаточно для выполнения любого квантового вычисления. Например, универсальным является набор, включающий вентиль Адамара, вентиль фазового сдвига, вентиль CNOT и вентиль π⁄8. С их помощью можно выполнить любое квантовое вычисление на произвольном наборе кубитов.

В этой статье мы не будем детально останавливаться на системе квантовых вентилей, более подробно про них и логические операции над кубитами можно почитать, например, вот тут. Главное, что надо запомнить:

  • Операции над квантовыми объектами требуют создания новых логических операторов (квантовых вентилей)
  • Квантовые вентили бывают однокубитные и двухкубитные
  • Существуют универсальные наборы вентилей, с помощью которых можно выполнить любое квантовое вычисление

Взаимосвязь

Один транзистор нам совершенно бесполезен, чтобы производить вычисления нам надо соединить много транзисторов между собой, то есть создать полупроводниковый чип из миллионов транзисторов, на которых уже строить логические схемы, АЛУ и, в конечном счете, получить современный процессор в его классическом виде.

Один кубит нам тоже совершенно бесполезен (ну если только в академическом плане),

чтобы производить вычисления нам нужна система кубитов (квантовых объектов)

которая, как мы уже говорили, создается при помощи запутывания кубитов между собой так, чтобы изменения в их состояниях происходили согласованно.

Алгоритмы

Стандартные алгоритмы, которые накопило человечество к текущему моменту, совершенно не подходят для реализации на квантовом компьютере. Да в общем-то и незачем. Квантовые компьютеры, основанные на вентильной логике над кубитами, требуют создания совершенно иных алгоритмов, квантовых алгоритмов. Из наиболее известных квантовых алгоритмов можно выделить три:

  • Алгоритм Шора (факторизация)
  • Алгоритм Гровера (быстрый поиск в неупорядоченной базе данных)
  • Алгоритм Дойча-Йожи (ответ на вопрос, постоянная или сбалансированная функция)

Принцип

И самое главное отличие — это принцип работы. У стандартного компьютера это цифровой, жестко детерминированный принцип, основанный на том, что если мы задали какое-то начальное состояние системы и пропустили его через заданный алгоритм, то результат вычислений будет один и тот же, сколько бы раз мы это вычисление не запускали. Собственно, такое поведение это именно то, что мы от компьютера и ждем.

Квантовый компьютер работает на аналоговом, вероятностном принципе. Результат работы заданного алгоритма на заданном начальном состоянии представляет собой выборку из вероятностного распределения конечных реализаций алгоритма плюс возможные ошибки.

Такая вероятностная природа квантовых вычислений обусловлена самой вероятностной сутью квантового мира. “Бог не играет в кости со вселенной”, — говорил старик Эйнштейн, но все эксперименты и наблюдения пока (в текущей научной парадигме) подтверждают обратное.

Оглавление

  • Дисклеймер
  • Введение
  • Основы. Квантовый объект и квантовые системы
  • Сравнение квантового компьютера и обычного
  • Физические реализации кубитов
  • Основы. Принцип работы квантового компьютера
  • Квантовые алгоритмы
  • Проблемы квантовых компьютеров
  • Пути решения проблем
  • D-Wave
  • Немного об эмуляции квантовых компьютеров
  • Квантовое вычислительное превосходство.
  • Заявление Google
  • Резюме
  • Заключение
  • Благодарности
  • Список ресурсов

Резюме

(к оглавлению)
Основы квантового компьютера урок цифры ответы

Квантовые компьютеры и квантовые вычисления — очень многообещающая, очень молодая и пока малоприменимая в промышленном плане область информационных технологий.

Развитие квантовых вычислений позволит (когда-нибудь) решать задачи:

  • Моделирования сложных физических систем на квантовом уровне
  • Нерешаемые на обычном компьютере из-за вычислительной сложности

Основные проблемы при создании и эксплуатации квантовых компьютеров:

  • Декогеренция
  • Ошибки (декогеренции и вентильные)
  • Архитектура процессоров (полносвязные схемы кубитов)

Состояние дел на текущий момент:

  • РЕАЛЬНОЙ коммерческой эксплуатации еще нет (и непонятно, когда будет)

Что может помочь:

  • Какое-то физическое открытие, снижающее затраты на обвязку и эксплуатацию процессоров
  • Открытие чего-то, что на порядок увеличит время декогеренции и/или снизит число ошибок

На мой взгляд (исключительно личное мнение), в текущей научной парадигме знаний мы не добьемся значительных успехов в развитии квантовых технологий, тут нужен качественный прорыв в какой-либо области фундаментальной или прикладной науки, который даст толчок новым идеям и методам.

Ну а пока — нарабатываем опыт в квантовом программировании, собираем и создаем квантовые алгоритмы, тестируем идеи и прочее и прочее. Ждем прорыва.

Зачем нужны квантовые компьютеры

Моделирование сложных физических систем

Первым о создании квантового компьютера в 80-х годах прошлого столетия заговорил Ричард Фейнман, американский учёный и физик, один из создателей квантовой электродинамики. В основу его запроса легла мысль о том, что подобное оценивается подобному. Уже тогда учёные и исследователи со всего мира нуждались не просто в теоретических расчётах квантовых систем, но и в точном имитировании их поведения.

Обычный пользовательский компьютер даже сегодня не способен справиться с этой задачей, потому что, как мы уже выяснили, квантовая микрочастица может принимать одномоментно два значения (0 и 1), тогда как система из двух частиц уже способна принимать 4 значения (00, 01, 10, 11) и так далее.

Таким образом, для создания квантовой системы, состоящей, например, из десяти электронов, необходимо задействовать 1024 процессора, работающих одновременно. При этом нельзя забывать о том, что смена состояния одного электрона моментально отразится на состоянии остальных (то есть вероятность у определённых комбинаций увеличится, а у некоторых, наоборот – уменьшится). Классическому процессору такая задача не под силу, так как он не может менять состояние сразу у двух битов, только у одного.

На сегодняшний день учёные и инженеры пока ещё не добились каких-то выдающихся результатов в области моделирования сложных физических систем. Но если представить, что такой квантовый компьютер будет когда-либо создан, по своей производительности он обгонит самые мощные современные электронно-вычислительные машины.

Квантовая криптография

Первый успешно функционирующий алгоритм для квантового компьютера был разработан в 1994 году учёным из США Питером Шором. В основу алгоритма была заложена способность раскладывать числа на простые множители. В 2001 году корпорация IBM представила миру программу, способную осуществлять вычисления, подобные этому: 12 = 3 х 4.

Как появился интернет – от идеи до ее реализации

Основы квантового компьютера урок цифры ответы

Читайте также

Подобные разработки делают имеющуюся сегодня систему защиты и обеспечения безопасности информационных данных абсолютно бесполезной. Самый распространённый и часто используемый сегодня для защиты данных криптографический алгоритм (RSA-алгоритм) основан на том, что простой компьютер не способен за короткое время разложить число на простые множители.

Не так сложно умножить 3 на 4, а если речь идёт об умножении одного числа с тысячей знаков на другое число с несколькими тысячами знаков? Разложить результат такого умножения, которое передаётся в виде ключа к зашифрованным данным, на простые множители обычный компьютер не способен, а квантовый с подобной задачей справится без труда за считанные секунды.

Задача поиска

Зато в поисковых задачах современные образцы квантовых компьютеров добились огромных успехов. Ровно 10 лет назад 128-кубитовый квантовый компьютер, разработанный компанией D-Wave, решил поставленную перед ним задачу – отыскал трёхмерную структуру белка по сотой известной последовательности его аминокислот. Незадолго до этого всё той же корпорации D-Wave удалось посотрудничать даже с NASA.

Эксперимент заключался в необходимости определения маршрута для марсохода из одной точки в другую. Результаты этого эксперимента доподлинно не известны, однако проект по созданию лаборатории искусственного квантового интеллекта начал реализовываться такими гигантами, как Google, NASA и D-Wave сразу после его завершения.

В задачах поиска квантовому компьютеру нет равных. Найти нужный адрес или выявить закономерность в статистических данных – задача для него всего на пару секунд. Сет Ллойд, квантовый механик, профессор Массачусетского технологического университета, разработал алгоритм для 70-кубитного квантового компьютера, который может находить запрашиваемые последовательности в накопленной базе расшифрованных генов человечества.

Такой базы на сегодняшний день пока ещё не существует, однако данный алгоритм позволяет уже сегодня заменить такие известные поисковые системы, как Google и Yandex.

Некоторые источники информации сообщали, что Сет Ллойд рассказал об идее квантового поиска руководству Google, однако оно не приняло её всерьёз. Помимо высокой точности и эффективности разработанный Ллойдом алгоритм обладал ещё одним неоспоримым достоинством – он был полностью невидимым, то есть он не позволял наблюдать за своей работой.

Дисклеймер

(к оглавлению)

Автор не является специалистом в квантовых вычислениях, и целевая аудитория статьи — такие же ИТ-шники, не квантовые специалисты, которые тоже хотят собрать в голове картинку под названием “Как работают квантовые компьютеры”. Из-за этого многие понятия в статье сознательно упрощены для лучшего понимания квантовых технологий на “базовом” уровне, но без совсем уж сильного упрощения с потерей информативности и адекватности.

В статье, в некоторых местах используются материалы из других источников, список которых приведен в конце статьи. Везде где это было возможно, вставлены прямые ссылки и указания на оригинал текста, таблицы или рисунка. Если где-то что-то (или кого-то) забыл, пишите — поправлю.

Какие компании разрабатывают квантовые компьютеры уже сегодня?

Квантовые компьютеры D-Wave

Формально дальше всех в этой гонке продвинулась канадская компания D-Wave. Она создала и успешно продает единственные представленные сегодня на рынке квантовые компьютеры. Среди ее клиентов — Google, NASA, Volkswagen и Lockheed Martin. В конце января этого года D-Wave анонсировала выпуск коммерческой версии квантового компьютера четвертого поколения D-Wave 2000Q. Его мощность, как утверждают в компании составляет 2000 кубитов. Однако многие сомневаются в том, что машины D-Wave можно называть полноценными квантовыми компьютерами, поскольку они способны решать лишь узкий круг вычислительных задач. С этим мнением не согласны в Google. Купленный поисковиком у D-Wave компьютер (кстати, он стоит от $10 млн до $15 млн) справился с некой специальной задачей в 100 миллионов раз быстрее обычного.

Американская IBM готовится вывести на рынок квантовые компьютеры с вычислительной мощностью 50 кубитов. Произойдет это, как утверждают в компании, уже в ближайшие несколько лет. С помощью квантовых компьютеров, получивших предварительное название IBM Q, можно будет, в частности, «распутать» сложные молекулярные и химические взаимодействия, что приведет к открытию новых лекарств и материалов, считают в IBM. Большие изменения ждут сферу логистики: будут найдены оптимальные пути для наиболее эффективной доставки товаров. Квантовые компьютеры также позволят найти новые способы моделирования финансовых данных и выделить ключевые глобальные факторы риска, что обезопасит инвестиции. В сфере искусственного интеллекта и машинного обучения можно будет обрабатывать очень большие объемы данных (например, связанные с поиском изображений или видео). «Мы сейчас переходим от стадии, на которой речь идет лишь об игрушках исследователей, к ситуации, позволяющей оценить новшество с коммерческой точки зрения», — отметил технический директор квантового центра IBM Скотт Краудер. Ранее IBM создала квантовый компьютер мощностью 5 кубитов.

Практически одновременно с IBM о планах выпустить коммерческий 50-кубитовый квантовый компьютер заявила компания Google. Причем сроки названы примерно те же — ближайшие 5 лет. «В области квантовых вычислений скоро будет достигнута историческая веха», — написали исследователи из лаборатории Quantum AI компании Google в своей статье, опубликованной в журнале Nature. Над созданием квантового компьютера поисковик начал работать еще в 2014 году.

Успехи конкурентов подстегивают еще одного крупного игрока — компанию Microsoft. В ноябре прошлого года она объявила о решении удвоить свои усилия в области создания квантового компьютера. В отличие от IBM и Google, компания Билла Гейтса делает ставку на интригующую, но пока недоказанную концепцию топологического квантового вычисления. «Я думаю, что мы находимся на пороге перехода от исследований к разработке», — сказал вице-президент квантовой программы Microsoft Тодд Холмдал. Одновременно компания разрабатывает программное обеспечение для будущих супермашин.

Всего, по данным аналитической компании CB Insights, над задачей создания квантового компьютера бьются не менее 18 корпораций. Среди них — авиастроительные компании Airbus и Lockheed Martin, китайский интернет-ритейлер Alibaba, британская телекоммуникационная компания British Telecommunications, компании Hewlett Packard, Toshiba, Intel, Mitsubishi, Nokia.

Эксперты Массачусетского технологического института (MIT) ожидают, что полноценные квантовые компьютеры, обрабатывающие информацию в разы быстрее современных суперкомпьютеров, появятся на рынке в течение ближайших пяти лет.

D-Wave

(к оглавлению)

Основы квантового компьютера урок цифры ответы

2000-кубитный компьютер D-Wave 2000Q. Источник: D-Wave Systems

На фоне заявления Google о достижении квантового превосходства используя процессор с 53-мя кубитами, компьютеры и анонсы от компании D-Wave, в которых число кубитов исчисляется тысячами, несколько сбивает с толку. Ну действительно, если 53 кубита смогли достичь квантового превосходства, то на что же способен компьютер с 2048 кубитами? Но не все так хорошо…

Если коротко (взято из вики):

Компьютеры D-Wave работают на принципе квантовой релаксации (квантовый отжиг), могут решать крайне ограниченный подкласс задач оптимизации, и не подходят для реализации традиционных квантовых алгоритмов и квантовых вентилей.

Более подробно можно почитать, например, тут, тут (осторожно, может не открываться из России), или у Scott Aaronson в статье из его блога. Кстати, очень рекомендую почитать вообще его блог, там много хорошего материала

Вообще с самого начала анонсов у научного сообщества возникали вопросы к компьютерам D-Wave. Например, в 2014 году IBM поставила под сомнение факт, что D-Wave использует квантовые эффекты. Дело дошло до того, что в 2015 году Google вместе с NASA купила один из таких квантовых компьютеров и после исследований подтвердила, что таки да, компьютер работает и вычисляет задачу быстрее, чем обычный. Еще про заявление Google можно почитать тут и, например, тут.

Главное, что компьютеры D-Wave, с их сотнями и тысячами кубитов нельзя использовать для вычисления и запуска квантовых алгоритмов. На них нельзя запустить алгоритм Шора, например. Все, что они могут — это используя определенные квантовые механизмы решать определенную задачу оптимизации. Можно считать, что D-Wave это такой квантовый ASIC для конкретной задачи.

Алгоритм Дойча-Йожи

(к оглавлению)

Алгоритм Дойча — Йожи (упоминается также как алгоритм Дойча — Джозы) — [квантовый алгоритм](https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D1%8B%D0%B9%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC), предложенный Давидом Дойчем и Ричардом Йожей в 1992 году, и ставший одним из первых примеров алгоритмов, предназначенных для выполнения на квантовых компьютерах. _

Задача Дойча — Йожи заключается в определении, является ли функция нескольких двоичных переменных F(x1, x2, … xn) постоянной (принимает либо значение 0, либо 1 при любых аргументах) или сбалансированной (для половины области определения принимает значение 0, для другой половины 1). При этом считается априорно известным, что функция либо является константой, либо сбалансирована. (С)

Еще можно почитать тут. Более простое объяснение:

Алгоритм Дойча (Дойча — Йожи) основан на переборе, но позволяет делать его быстрее обычного. Представьте, что на столе лежит монета и необходимо узнать фальшивая ли она или нет. Для этого нужно дважды посмотреть на монету и определить: «орел» и «решка» – настоящая, два «орла», две «решки» — фальшивая. Так вот, если использовать квантовый алгоритм Дойча, то это определение можно сделать одним взглядом – измерением. (С)

Возможные примененияПравить

Приложения к криптографииПравить

Исследования в области искусственного интеллектаПравить

Молекулярное моделированиеПравить

Собери коллекцию достижений

Основы квантового компьютера урок цифры ответы

Везунчик

Открыть все карточки первого задания с первого раза в любом из тренажеров.

Основы квантового компьютера урок цифры ответы

Основы квантового компьютера урок цифры ответы

Покоритель будущего

Распределить верно с первого раза в тренажере для 1-7 класса.

Основы квантового компьютера урок цифры ответы

Основы квантового компьютера урок цифры ответы

Профессионал

Распределить все профессии с первого раза в тренажере для 8-11 класса.

Основы квантового компьютера урок цифры ответы

Основы квантового компьютера урок цифры ответы

Мастер перевода

Распределить верно все описания с первого раза в тренажере для 1-7 класса.

Основы квантового компьютера урок цифры ответы

Основы квантового компьютера урок цифры ответы

Компьютерный гений

Перенести все принципы работы квантового компьютера верно с первого раза в любом из тренажеров.

Основы квантового компьютера урок цифры ответы

Основы квантового компьютера урок цифры ответы

Квантовый программист

Распределить верно все значки с первого раза в тренажере для 8-11 класса.

Основы квантового компьютера урок цифры ответы

Основы квантового компьютера урок цифры ответы

Квантовый администратор

Отметить все задачи с первого раза в тренажере для 1-7 класса.

Основы квантового компьютера урок цифры ответы

Основы квантового компьютера урок цифры ответы

Научный языковед

Распределить верно все описания с первого раза в тренажере для 1-7 класса.

Основы квантового компьютера урок цифры ответы

Основы квантового компьютера урок цифры ответы

Все тренажеры пройдены

Авторизоваться на сайте и пройти оба тренажера урока.

Основы квантового компьютера урок цифры ответы

Логотип партнера

Хочешь связать свою жизнь с передовой наукой, стать специалистом в области квантовых технологий? Начни свой профессиональный путь вместе с нами. Госкорпорация Росатом (Квантовые технологии) и Российский квантовый центр помогут тебе стать участником квантового сообщества. Присоединяйся: https://t.me/QuanTeensRQC
Учебные материалы разработаны Госкорпорацией Росатом (Квантовые технологии) при поддержке Российского квантового центра и помогают ученикам познакомиться с миром квантовой физики и квантовых разработок, а также выбрать актуальную профессию будущего.

Внешняя ссылка

На каком принципе работает квантовый компьютер?

Квантовый компьютер использует для вычисления не обычные (классические) алгоритмы, а процессы квантовой природы, так называемые квантовые алгоритмы, использующие квантовомеханические эффекты, — такие как квантовый параллелизм и квантовая запутанность. Базисные состояния могут иметь и более сложный вид

Что такое квантовый компьютер простыми словами?

Квантовые вычислительные системы — устройства, использующие явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Такие устройства оперируют кубитами ( квантовыми битами), которые могут одновременно принимать значение и логического ноля, и логической единицы

Какие квантовые технологии уже используют?

К возможным практическим реализациям относят квантовые вычисления и квантовый компьютер, квантовую криптографию, квантовую телепортацию, квантовую метрологию, квантовые сенсоры, и квантовые изображения

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *